已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第二項(xiàng),第五項(xiàng),第十四項(xiàng)分別是等比數(shù)列{bn}的第二項(xiàng),第三項(xiàng),第四項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)任意自然數(shù)n,均有
求通項(xiàng)公式Cc1+c2+c3+……+c2006

解:(1)an=2n-1,bn=3n-1.
(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(1)求 及;
(2)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)求的最大或最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)等差數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且
成等比數(shù)列,求;
(III)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知等比數(shù)列{}的前n項(xiàng)和為, 滿足
均為常數(shù))
(1)求r的值;     (4分)
(2)當(dāng)b=2時(shí),記,求數(shù)列的前項(xiàng)的和.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)設(shè)等差數(shù)列第10項(xiàng)為24,第25項(xiàng)為-21
(1)求這個(gè)數(shù)列的通項(xiàng)公式;(2)設(shè)為其前n項(xiàng)和,求使取最大值時(shí)的n值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的首項(xiàng)的等比數(shù)列,其前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知數(shù)列{}中,對(duì)一切,點(diǎn)在直線y=x上,
(Ⅰ)令,求證數(shù)列是等比數(shù)列,并求通項(xiàng)(4分);
(Ⅱ)求數(shù)列的通項(xiàng)公式(4分);
(Ⅲ)設(shè)的前n項(xiàng)和,是否存在常數(shù),使得數(shù)列 為等差數(shù)列?若存在,試求出 若不存在,則說明理由(5分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}為等差數(shù)列,它的前n項(xiàng)和為Sn,且a3=5,S6=36 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(-3)n·an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案