【題目】已知函數(shù)
(1)求函數(shù)f(x)在 上的最大值與最小值;
(2)已知 ,x0∈( , ),求cos4x0的值.
【答案】
(1)解:函數(shù)
化簡可得:3 + sin2x﹣
= ﹣ cos2x× + × sin2x+ sin2x﹣ ﹣ cos2x
= sin2x﹣cos2x+
=2sin(2x﹣ )+ .
∵x∈ 上,
∴2x﹣ ∈[ , ].
∴sin(2x﹣ )∈[ ,1].
函數(shù)f(x)在 上的最大值為 ,最小值為 .
(2)解:∵ ,即2sin(4x0﹣ )+ =
sin(4x0﹣ )=
∵x0∈( , ),
4x0﹣ ∈[ ,π],
∴cos(4x0﹣ )= .
cos4x0=cos[4x0﹣ ) ]=cos(4x0﹣ )cos ﹣sin(4x0﹣ )sin = × ﹣ = .
【解析】(1)根據(jù)二倍角和兩角差的正弦公式將f(x)化簡為f(x)=Asin(ωx+φ)的形式,結(jié)合正弦函數(shù)的圖象和性質(zhì)可得到在給定區(qū)間的最值,(2)由題意代入找得到sin(4x0﹣ ),cos(4x0﹣ )的值,根據(jù)cos4x0=cos[(4x0﹣ ) + ],由兩角和的余弦公式展開代值可求得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點(diǎn)為F,C上的一點(diǎn)M(4,m)滿足|MF|=4.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)E(﹣1,0)作不經(jīng)過原點(diǎn)的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點(diǎn)A,B,試判斷直線AB是否經(jīng)過焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域[﹣1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示
x | ﹣1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
下列關(guān)于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù)
③如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a最多有4個(gè)零點(diǎn).
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(n)=1+ + + +…+ ,g(n)= ﹣ ,n∈N* .
(1)當(dāng)n=1,2,3時(shí),試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為 (a為常數(shù),n∈N*).
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個(gè)新畢業(yè)的老師要分配到四所學(xué)校任教,每個(gè)老師都有分配(結(jié)果用數(shù)字表示).
(1)共有多少種不同的分配方案?
(2)恰有一個(gè)學(xué)校不分配老師,有多少種不同的分配方案?
(3)某個(gè)學(xué)校分配了2個(gè)老師,有多少種不同的分配方案?
(4)恰有兩個(gè)學(xué)校不分配老師,有多少種不同的分配方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{ }的前10項(xiàng)的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 記點(diǎn)M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直線MN的方程;
(Ⅱ)證明:線段MN與曲線y=f(x)有且只有一個(gè)異于M、N的公共點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com