【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當(dāng)且僅當(dāng)adbc(即)時等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。

A.B.C.D.

【答案】A

【解析】

代入二維形式的柯西不等式的公式中,進(jìn)行化簡即可得到答案。

由柯西不等式可知:

所以,當(dāng)且僅當(dāng)即x=時取等號,

故函數(shù)的最大值及取得最大值時的值分別為,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率,橢圓上的點(diǎn)到左焦點(diǎn)的距離的最大值為3.

(1)求橢圓的方程;

(2)求橢圓的外切矩形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

2)對任意的,,,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,側(cè)面底面,的中點(diǎn),,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,已知在每輪游戲中所產(chǎn)生的個紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的值域?yàn)?/span>,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是大型科學(xué)競技類真人秀節(jié)目,是專注傳播腦科學(xué)知識和腦力競技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡《最強(qiáng)大腦》

不喜歡《最強(qiáng)大腦》

合計(jì)

男生

15

女生

15

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4

(I)請將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;

(II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

參考公式:,

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線,過點(diǎn)的直線的參數(shù)方程為.直線與曲線分別交于、

(1)求的取值范圍;

(2)若、成等比數(shù)列,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合由滿足下列兩個條件的數(shù)列構(gòu)成:②存在實(shí)數(shù)使得對任意正整數(shù)都成立.

(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列試判斷數(shù)列是否為集合的元素;

(2)設(shè)數(shù)列的前項(xiàng)和為若對任意正整數(shù)點(diǎn)均在直線上,證明:數(shù)列并寫出實(shí)數(shù)的取值范圍;

(3)設(shè)數(shù)列若數(shù)列沒有最大值,求證:數(shù)列一定是單調(diào)遞增數(shù)列。

查看答案和解析>>

同步練習(xí)冊答案