【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為().
(1)寫出曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若射線()與曲線,分別交于,兩點(不是原點),求的最大值.
【答案】(1) 曲線的直角坐標(biāo)方程為;曲線的普通方程為;(2).
【解析】
(1)根據(jù)極坐標(biāo)和直角坐標(biāo)之間的轉(zhuǎn)換公式,以及加減消參的方法,即可求得對應(yīng)的直角坐標(biāo)方程和普通方程;
(2)將曲線的直角方程轉(zhuǎn)化為極坐標(biāo)方程,聯(lián)立射線,即可用的三角函數(shù)表示出以及,再求該三角函數(shù)的最大值即可.
(1)對曲線的極坐標(biāo)方程兩邊同乘以,
可得,即可得的直角坐標(biāo)方程為:
,整理得;
曲線的參數(shù)方程為,兩式相加可得:
,整理得.
綜上所述:曲線的直角坐標(biāo)方程為;
曲線的普通方程為.
(2)曲線的極坐標(biāo)方程為,
聯(lián)立,即可得,即
又曲線的極坐標(biāo)方程為,
聯(lián)立,即可得,即
故
因為,故可得
則,
即可得的最大值為.
即的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)先修課程是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有人參與學(xué)習(xí)先修課程,這兩年學(xué)習(xí)先修課程的學(xué)生都參加了高校的自主招生考試(滿分分),結(jié)果如下表所示:
分?jǐn)?shù) | |||||
人數(shù) | |||||
參加自主招生獲得通過的概率 |
(1)這兩年學(xué)校共培養(yǎng)出優(yōu)等生人,根據(jù)圖中等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗?zāi)芊裨诜稿e的概率不超過的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學(xué)習(xí)大學(xué)先修課程 | |||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計 |
(2)已知今年全校有名學(xué)生報名學(xué)習(xí)大學(xué)選項課程,并都參加了高校的自主招生考試,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.
(i)在今年參與大學(xué)先修課程學(xué)習(xí)的學(xué)生中任取一人,求他獲得高校自主招生通過的概率;
(ii)某班有名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),設(shè)獲得高校自主招生通過的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有5個匣子,每個匣子有一把鑰匙,并且鑰匙不能通用.如果隨意在每一個匣內(nèi)放入一把鑰匙,然后把匣子全都鎖上.現(xiàn)在允許砸開一個匣子,使得能相繼用鑰匙打開其余4個匣子,那么鑰匙的放法有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工會組織了一次工人綜合技能比賽,一共有名工人參加,他們的成績都分布在內(nèi),數(shù)據(jù)經(jīng)過匯總整理得到如下的頻率分布直方圖,規(guī)定成績在分及分以上的為優(yōu)秀.
(1)求圖中的值;
(2)估計這次比賽成績的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);
(3)某工廠車間有名工人參加這次比賽,他們的成績分布和整體的成績分布情況完全一致,若從該車間參賽的且成績?yōu)閮?yōu)秀的工人中任選兩人,求這兩人成績均低于分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)業(yè)觀光區(qū)的平面示意圖如圖所示,其中矩形的長千米,寬千米,半圓的圓心為中點,為了便于游客觀光休閑,在觀光區(qū)鋪設(shè)一條由圓弧、線段、組成的觀光道路,其中線段經(jīng)過圓心,點在線段上(不含線段端點、),已知道路、的造價為每千米萬元,道路造價為每千米 萬元,設(shè),觀光道路的總造價為.
(1)試求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)為何值時,觀光道路的總造價最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,右焦點F到右準(zhǔn)線的距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過F的直線l與橢圓C相交于P,Q兩點.已知l被圓O:x2+y2=a2截得的弦長為,求△OPQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項公式;
(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD, 為線段的中點, 在線段上.
(I)當(dāng)是線段的中點時,求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點,使二面角的大小為60°,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長均相等的三棱柱中,設(shè)是的中點,直線與棱的延長線交于點.
(1)求證:直線平面;
(2)若底面,求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com