【題目】小王大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè).經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本3萬元,每生產(chǎn)x萬件,該產(chǎn)品需另投入流動成本萬元.在年產(chǎn)量不足8萬件時,,在年產(chǎn)量不小于8萬件時,每件產(chǎn)品的售價為5元.通過市場分析,小王生產(chǎn)的商品能當年全部售完.

1)寫出年利潤單位:萬元關(guān)于年產(chǎn)量單位:萬件的函數(shù)解析式.

2)年產(chǎn)量為多少萬件時,小王在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

注:年利潤年銷售收入固定成本流動成本

【答案】1.(2)產(chǎn)量為10萬件時,最大利潤為15萬元.

【解析】

1)根據(jù)年利潤年銷售收入固定成本流動成本,分兩種情況分別列出的分段函數(shù)關(guān)系式;

2)當時,利用配方法求二次函數(shù)的最大值,當時,利用基本不等式求出的最大值,最后取較大的的值即可.

1)因為每件商品售價為5元,則x萬件商品銷售收入為5x萬元.

依題意得,當時,

時,.

所以

2)當時,,

此時,當時,取得最大值萬元

時,,

此時,當且僅當,即時,取得最大值15萬元,

因為,所以,當年產(chǎn)量為10萬件時,小王在這一商品的生產(chǎn)中所獲利潤最大,最大利潤為15萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅是我國南北朝時期杰出的數(shù)學家和天文學家祖沖之的兒子,他提出了一條原理:“冪勢既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設某雙曲線型冷卻塔是曲線 與直線, 所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得,如圖所示.試應用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法從甲、乙兩組中共抽取3名工人進行技術(shù)考核.

(1)求從甲、乙兩組各抽取的人數(shù);

(2)求從甲組抽取的工人中恰有1名女工人的概率;

(3)記X表示抽取的3名工人中男工人人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,.

1)求的通項公式;

2)設,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是: ,,,.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)之比如下表所示,求數(shù)學成績在之外的人數(shù).

分數(shù)段

X:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】總體由編號為01,02,,192020個個體組成,利用下面的隨機數(shù)表選取6個個體,選取方法從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第6個個體的編號為(

7816 6572 0802 6314 0702 4369 9728 0198

3204 9234 4935 8200 3623 4869 6938 7481

A.07B.04C.02D.01

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有3個紅球,3個黃球和1個藍球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取3個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;

③若取得的3個小球只有1種顏色,則該顧客中得一等獎,獎金是一個10元的紅包;

④若取得的3個小球有3種顏色,則該顧客中得二等獎,獎金是一個5元的紅包;

⑤若取得的3個小球只有2種顏色,則該顧客中得三等獎,獎金是一個2元的紅包.

抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(2)記一次抽獎獲得的紅包獎金數(shù)(單位:元)為,求的分布列及數(shù)學期望,并計算這20位顧客(假定每位獲得抽獎機會的顧客都會去抽獎)在抽獎中獲得紅包的總獎金數(shù)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象上相鄰的兩個最值點為,

1)求的解析式;

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習冊答案