【題目】(本小題滿(mǎn)分12分)已知函數(shù),其中,且.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】見(jiàn)解析
【解析】(1)函數(shù)的定義域?yàn)?/span>,.………………1分
當(dāng)時(shí),,函數(shù)在區(qū)間上是增函數(shù);………………2分
當(dāng)時(shí),由,得;由,得,………………3分
所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).………………4分
綜上:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為.………………5分
(2)不等式.………………6分
當(dāng)時(shí),取,,不合題意;………………7分
當(dāng)時(shí),令,則問(wèn)題轉(zhuǎn)化為恒成立時(shí),求的取值范圍.………8分
由于.令,得,則
當(dāng)時(shí),,當(dāng)時(shí),,
所以,函數(shù)的最大值為,………………10分
于是由題意知,解得,
故實(shí)數(shù)的取值范圍是.………………12分
【命題意圖】本題主要考查導(dǎo)數(shù)與單調(diào)性的關(guān)系、不等式恒成立,意在考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,考查轉(zhuǎn)化思想與分類(lèi)討論思想、構(gòu)造法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年入冬以來(lái),各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車(chē)更是出臺(tái)了各類(lèi)限行措施,為分析研究車(chē)流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車(chē)流量與的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車(chē)流量(萬(wàn)輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫(huà)出散點(diǎn)圖;
(2)試判斷與是否具有線性關(guān)系,若有請(qǐng)求出關(guān)于的線性回歸方程,若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)若周六同一時(shí)間段的車(chē)流量為60萬(wàn)輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足4Sn=an2+2an﹣3(n∈N*),則a2016=( )
A.4029
B.4031
C.4033
D.4035
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)半軸為,短半軸為.橢圓的兩個(gè)焦點(diǎn)分別為,,離心率為方程的一根,長(zhǎng)半軸為,短半軸為.若,.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過(guò)橢圓上且位于軸左側(cè)的一點(diǎn)作圓的兩條切線,分別交軸于點(diǎn)、.試推斷是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(I)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;
(II)設(shè)點(diǎn)D在曲線上,且曲線在點(diǎn)D處的切線與直線垂直,試確定點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,我艇在A處發(fā)現(xiàn)一走私船在方位角45°且距離為12海里的B處正以每小時(shí)10海里的速度向方位角105°的方向逃竄,我艇立即以14海里/小時(shí)的速度追擊,求我艇追上走私船所需要的最短時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在軸上的射影為點(diǎn),過(guò)點(diǎn)的直線與橢圓相交于, 兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=kx+log9(9x+1)(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)g(x)=log9(a3x﹣ a)的圖象與f(x)的圖象有且只有一個(gè)公共點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列 ,﹣ , ,﹣ ,…的一個(gè)通項(xiàng)公式為( )
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com