【題目】設A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個數(shù)之和記為S(A1 , A2 , A3 , …,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是(
A.①②
B.①③
C.②③
D.③

【答案】B
【解析】解:把aij按其腳注排成一個數(shù)陣的話,如下,對角線上全是1,對角線外,1成對出現(xiàn),如下:

1)a11=a22=…=ann=1;
2)當i≠j時,若aij=1,則aij=1;
若aij=0,則aij=0;
即對角線上全是1,對角線外,1成對出現(xiàn),
所以,S=n+2k,k是某一個非負整數(shù),
即:S與n的奇偶性一致,且S最小值是n,
又因為,當A1=A2=…=An時,S=n2
故①③是正確的.
故選:B.
【考點精析】本題主要考查了集合的表示方法-特定字母法的相關知識點,需要掌握①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|具有的性質},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,過點A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.

(1)若BC是⊙O的直徑,求∠D的大。
(2)若∠DAE=25°,求證:DA2=DCBP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為成績與班級有關系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用紅、黃、藍、白、黑五種顏色涂在如圖所示的四個區(qū)域內,每個區(qū)域涂一種顏色,相鄰兩個區(qū)域涂不同的顏色,五種顏色可以反復使用,共有___________種不同的涂色方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內不同的零點恰有兩個,且落在區(qū)間[0,1),(1,2]內各一個,求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問:米幾何?”如圖所示的是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一袋中裝有6個黑球,4個白球.如果不放回地依次取出2個球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的條件下,第2次又取到黑球的概率.

查看答案和解析>>

同步練習冊答案