【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程=bx+a,
(3)試預(yù)測加工20個零件需要多少小時?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一直一艘船由島以海里/小時的速度往北偏東的島形式,計劃到達島后停留分鐘后繼續(xù)以相同的速度駛往島.島在島的北偏西的方向上,島也也在島的北偏西的方向上.上午時整,該船從島出發(fā).上午時分,該船到達處,此時測得島在北偏西的方向上.如果一切正常,此船何時能到達島?(精確到分鐘)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標軸方程為ρcos(θ﹣ )=2 .
(1)求曲線C的普通方程與直線l的直角坐標方程;
(2)設(shè)點P為曲線C上的動點,求點P到直線l距離的最大值及其對應(yīng)的點P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(Ⅰ)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計該組數(shù)據(jù)的平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經(jīng)過比賽后從這6人中選拔2人組成該校代表隊,求這2人來自不同組別的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}和{bn}是兩個等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時, >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(1)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(2)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經(jīng)過比賽后從這6人中選拔2人組成該校代表隊,求這2人來自不同組別的概率;
(3)假設(shè)每組數(shù)據(jù)組間是平均分布的,若該校希望使15%的學(xué)生的一周課外閱讀時間不低于(小時)的時間,作為評選該校“課外閱讀能手”的依據(jù),試估計該值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣4:坐標系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com