【題目】若函數(shù),當時,函數(shù)有極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)若關于的方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
【答案】(1)(2)極大值,極小值,(3)
【解析】
(1)求導,根據(jù)極值的定義得到,代入數(shù)據(jù)解得答案.
(2)求導得到單調(diào)區(qū)間,計算極值得到答案.
(3)變換得到有三個交點,畫出函數(shù)圖像,根據(jù)圖像得到答案.
(1)函數(shù),,
由題意知,當時,函數(shù)有極值,,
即,解得,故所求函數(shù)的解析式為;
(2)由(1)得,令,得或,
當變化時,,的變化情況如下表:
單調(diào)遞增 | 單調(diào)遞減 | 單調(diào)遞增 |
因此,當時,有極大值2,當時,有極小值-2,
(3)畫出函數(shù)圖像,如圖所示:
要使方程有三個不同的實數(shù)解,即有三個交點,
根據(jù)圖像知:.
科目:高中數(shù)學 來源: 題型:
【題目】 山東省《體育高考方案》于2012年2月份公布,方案要求以學校為單位進行體育測試,某校對高三1班同學按照高考測試項目按百分制進行了預備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分數(shù)段的人數(shù)為2人.
(Ⅰ)請估計一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級共有學生名,為了解學生某次月考的情況,抽取了部分學生的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,繪制出如下尚未完成的頻率分布表:
分組 | 頻數(shù) | 頻率 |
(1)補充完整題中的頻率分布表;
(2)若成績在為優(yōu)秀,估計該校高三年級學生在這次月考中,成績優(yōu)秀的學生約為多少人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD為直角梯形,,,,,且平面平面ABCD.
(1)求證:;
(2)在線段PA上是否存在一點M,使二面角M-BC-D的大小為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長均為的四面體中,點為的中點,點為的中點.若點,是平面內(nèi)的兩動點,且,,則的面積為( )
A. B. 3
C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村電費收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收。
方案二:不收取管理費,每度0.58元.
(1)求方案一的收費L(x)(元)與用電量x(度)間的函數(shù)關系.若老王家九月份按方案一繳費35元,問老王家該月用電多少度?
(2)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com