如圖,ABCD-A1B1C1D1為正方體,下面結論中正確的是______.(把你認為正確的結論都填上)
①BD平面CB1D1;
②AC1⊥平面CB1D1
③AC1與底面ABCD所成角的正切值是
2
;
④二面角C-B1D1-C1的正切值是
2
;
⑤過點A1與異面直線AD與CB1成70°角的直線有2條.
如圖,正方體ABCD-A1B1C1D1 中,
由于BDB1D1 ,由直線和平面平行的判定定理可得BD平面CB1D1 ,故①正確.
由正方體的性質可得B1D1⊥A1C1,CC1⊥B1D1,故B1D1⊥平面 ACC1A1,故 B1D1⊥AC1
同理可得 B1C⊥AC1.再根據(jù)直線和平面垂直的判定定理可得,AC1⊥平面CB1D1 ,故②正確.
AC1與底面ABCD所成角的正切值為
CC1
AC
=
1
2
,故③不正確.
取B1D1 的中點M,則∠CMC1即為二面角C-B1D1-C1的平面角,Rt△CMC1中,tan∠CMC1=
CC1
C1M
=
1
2
2
=
2
,故④正確.
由于異面直線AD與CB1成45°的二面角,如圖,過A1作MNAD、PQCB1,設MN與PQ確定平面α,∠PA1M=45°,過A1 在面α上方作射線A1H,
則滿足與MN、PQ 成70°的射線A1H有4條:滿足∠MA1H=∠PA1H=70°的有一條,滿足∠PA1H=∠NA1H=70°的有一條,滿足∠NA1H=∠QA1H=70°的有一條,
滿足QA1H=∠MA1H=70°的有一條.故滿足與MN、PQ 成70°的直線有4條,故過點A1與異面直線AD與CB1成70°角的直線有4條,故⑤不正確.

故答案為 ①②④.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長為2,M,N分別為AA1、BB1的中點.
求:(1)CM與D1N所成角的余弦值.
(2)D1N與平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在四棱錐P-ABCD中,ABCD為正方形,PA⊥平面ABCD,若PA=AB,則PC與面PAB所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
3
,AB⊥AC,
(1)證明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角α-l-β的大小為120°,點B,C在棱l上,A∈α,D∈β,AB⊥l,CD⊥l,AB=2,BC=1,CD=3,則AD的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果正四棱錐的底面邊長為2,側面積為4
2
,則它的側面與底面所成的(銳)二面角的大小為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖△BCD與△MCD都是邊長為2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2
3

(1)求點A到平面MBC的距離;
(2)求平面ACM與平面BCD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P是AC與BD的交點,M是CC1的中點.
(1)求證:A1P⊥平面MBD;
(2)求直線B1M與平面MBD所成角的正弦值;
(3)求平面ABM與平面MBD所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,點M、N分別為BC、PA的中點,且PA=AB=2.
(1)證明:BC⊥AMN;
(2)在線段PD上是否存在一點E,使得MN面ACE?若存在,求出PE的長,若不存在,說明理由.
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

同步練習冊答案