【題目】如圖所示,在直三棱柱,其中P為棱上的任意一點(diǎn),設(shè)平面PAB與平面的交線(xiàn)為QR.
(1)求證:AB∥QR;
(2)若P為棱上的中點(diǎn),求幾何體的體積.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)由 可得AB//平面 ,利用線(xiàn)面平行性質(zhì)定理可得結(jié)果;(2)由題意先明確平面,利用割補(bǔ)法求體積:幾何體QR-ABC的體積為.
(1)在直三棱柱中,
因?yàn)?/span>,平面.平面,
所以AB//平面.
因?yàn)槠矫?/span>PAB與平面的交線(xiàn)為QR,且平面PAB,
所以AB∥QR.
(2)在側(cè)面中,因?yàn)?/span>BC=2,,P為棱上的中點(diǎn),
所以,
所以=∠PBC,所以,
即.
在直三棱柱中,平面ABC,
所以.
因?yàn)?/span>AB=BC=2,AC=,
所以,所以,
又,所以平面,
所以平面.
因?yàn)?/span>BC=2,.
所以
又,
所以,
因?yàn)?/span>,所以。
所以.
所以幾何體QR-ABC的體積為
,
法二:在側(cè)面中,因?yàn)?/span>BC=2,為棱上的中點(diǎn),
則.
所以有,
所以,
則QR,RP,RC三線(xiàn)相互垂直.
又.
在△BPC中,由射影定理,可得
在△ABP中,由三角形相似,可得
則.
又.
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測(cè)試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對(duì)學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | ||||||
甲 | 5 | 15 | 35 | 35 | 7 | 3 |
乙 | 3 | 7 | 20 | 40 | 20 | 10 |
根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級(jí)的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級(jí)的概率.
(1)求出乙生產(chǎn)三等品的概率;
(2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;
(3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于的線(xiàn)性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?
附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非
負(fù)半軸為極軸建立的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)且與直線(xiàn)平行的直線(xiàn)交于,兩點(diǎn),求點(diǎn)到,兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB=AD,BD⊥CD,點(diǎn)E、F分別是棱BC、BD的中點(diǎn).
(1)求證:EF∥平面ACD;
(2)求證:AE⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系下,已知圓O:,直線(xiàn)l:()與圓O相交于A,B兩點(diǎn),且.
(1)求直線(xiàn)l的方程;
(2)若點(diǎn)E,F分別是圓O與x軸的左、右兩個(gè)交點(diǎn),點(diǎn)D滿(mǎn)足,點(diǎn)M是圓O上任意一點(diǎn),點(diǎn)N在線(xiàn)段上,且存在常數(shù)使得,求點(diǎn)N到直線(xiàn)l距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,,,分別為線(xiàn)段上的點(diǎn),且,.
(1)證明:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點(diǎn)E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大小;
(3)棱PC上是否存在一點(diǎn)F,使平面AEC?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com