【題目】如圖所示,在直三棱柱,其中P為棱上的任意一點(diǎn),設(shè)平面PAB與平面的交線(xiàn)為QR.

(1)求證:AB∥QR;

(2)若P為棱上的中點(diǎn),求幾何體的體積.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1) 可得AB//平面 ,利用線(xiàn)面平行性質(zhì)定理可得結(jié)果;(2)由題意先明確平面,利用割補(bǔ)法求體積:幾何體QR-ABC的體積為.

(1)在直三棱柱中,

因?yàn)?/span>,平面.平面

所以AB//平面.

因?yàn)槠矫?/span>PAB與平面的交線(xiàn)為QR,且平面PAB,

所以ABQR.

(2)在側(cè)面中,因?yàn)?/span>BC=2,,P為棱上的中點(diǎn),

所以,

所以=∠PBC,所以,

.

在直三棱柱中,平面ABC,

所以.

因?yàn)?/span>AB=BC=2,AC=

所以,所以

,所以平面

所以平面.

因?yàn)?/span>BC=2,.

所以

,

所以

因?yàn)?/span>,所以

所以.

所以幾何體QR-ABC的體積為

,

法二:在側(cè)面中,因?yàn)?/span>BC=2,為棱上的中點(diǎn),

.

所以有,

所以

QR,RP,RC三線(xiàn)相互垂直.

.

在△BPC中,由射影定理,可得

在△ABP中,由三角形相似,可得

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測(cè)試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對(duì)學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

5

15

35

35

7

3

3

7

20

40

20

10

根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級(jí)的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級(jí)的概率.

1)求出乙生產(chǎn)三等品的概率;

2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;

3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號(hào)

1

2

3

4

5

人均純收入

5

6

7

8

10

1)求關(guān)于的線(xiàn)性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?

附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式.

1)若方程有兩個(gè)實(shí)根,求不等式的解集;

2;

3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非

負(fù)半軸為極軸建立的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)且與直線(xiàn)平行的直線(xiàn)兩點(diǎn),求點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=AD,BDCD,點(diǎn)E、F分別是棱BC、BD的中點(diǎn).

1)求證:EF∥平面ACD;

2)求證:AEBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系下,已知圓O,直線(xiàn)l)與圓O相交于AB兩點(diǎn),且.

1)求直線(xiàn)l的方程;

2)若點(diǎn)E,F分別是圓Ox軸的左、右兩個(gè)交點(diǎn),點(diǎn)D滿(mǎn)足,點(diǎn)M是圓O上任意一點(diǎn),點(diǎn)N在線(xiàn)段上,且存在常數(shù)使得,求點(diǎn)N到直線(xiàn)l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,,分別為線(xiàn)段上的點(diǎn),且.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在底面是菱形的四棱錐中,,點(diǎn)EPD上,且

1)證明:平面ABCD;

2)求二面角的大小;

3)棱PC上是否存在一點(diǎn)F,使平面AEC?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案