【題目】已知橢圓)的離心率為右焦點為,斜率為1的直線與橢圓交于、兩點,為底邊作等腰三角形,頂點為

(1)求橢圓的方程;

(2)求的面積

【答案】1;2

【解析】

試題分析:(1)根據(jù)橢圓的簡單幾何性質(zhì)知,寫出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點為的坐標(biāo),再根據(jù)為等腰三角形知,從而得的斜率為,求出,寫出,并計算,再根據(jù)點到直線距離公式求高即可計算出面積

試題解析:(1)由已知得,,解得,,

所以橢圓的方程為

(2)設(shè)直線的方程為

設(shè)、的坐標(biāo)分別為,),中點為,

,

因為是等腰△的底邊,所以

所以的斜率為,解得,此時方程

解得,,所以,,所以,

此時,點到直線的距離,

所以的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)俄羅斯新羅西斯克2015517日電 記者吳敏、鄭文達(dá)報道:當(dāng)?shù)貢r間17日,參加中俄海上聯(lián)合-2015()”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時,輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.

(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

(2)為保證小艇在30分鐘內(nèi)(30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說明你的推理過程;

(3)是否存在v,使得小艇以v海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫度x

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進(jìn)行檢驗

1求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;

2若選取的是日與日的兩組數(shù)據(jù),請根據(jù)日與日的數(shù)據(jù),求關(guān)于的線性回歸方程;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問2中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點.

(1)求證: 平面平面;

(2)若的中點,且二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,點是棱的中點,,平面平面

(Ⅰ)求證://平面

(Ⅱ)求證:平面

(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個值(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域為,記內(nèi)的整點個數(shù)為,(整點即橫、縱坐標(biāo)均為整數(shù)的點)

(1)計算的值;

(2)求數(shù)列的通項公式;

(3)記數(shù)列的前項和為,且,若對于一切的正整數(shù),總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過點

(1)求圓的圓心坐標(biāo)和半徑;

(2)若直線與圓相切,求直線的方程;

(3)若直線與圓相交于P,Q兩點,求三角形CPQ的面積的最大值,并求此時

直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓左、右焦點,點在橢圓上,且軸,的周長為6.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是橢圓上異于點的兩個動點,如果直線與直線的傾斜角互補(bǔ),證明:直線的斜率為定值,并求出這個定值.

查看答案和解析>>

同步練習(xí)冊答案