已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且.
(1)求點(diǎn)T的橫坐標(biāo);
(2)若以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求的取值范圍.
(1)
(2)

試題分析:解:(1)由題意得,,設(shè)
,.
,
,①                       2分
在拋物線上,則,②
聯(lián)立①、②易得                                      4分
(2)①設(shè)橢圓的半焦距為,由題意得
設(shè)橢圓的標(biāo)準(zhǔn)方程為,
   ③ ,         ④               5分
將④代入③,解得(舍去)
所以                                          6分
故橢圓的標(biāo)準(zhǔn)方程為                             7分
②. (ⅰ)當(dāng)直線的斜率不存在時(shí), ,,
,所以            8分
(ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

設(shè),則由根與系數(shù)的關(guān)系,
可得:,                    9分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240158253391105.png" style="vertical-align:middle;" />,所以
,

       11分
,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015825448719.png" style="vertical-align:middle;" />,即,
所以
所以                                   13分
綜上所述:.                             14分
點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系的運(yùn)用屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C: 的左、右焦點(diǎn)分別為,離心率為,點(diǎn)A是橢圓上任一點(diǎn),的周長(zhǎng)為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)任作一動(dòng)直線l交橢圓C于兩點(diǎn),記,若在線段上取一點(diǎn)R,使得,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足. 問是否存在一個(gè)定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是2和8的等比中項(xiàng),則圓錐曲線的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點(diǎn),為線段的中點(diǎn),射線交橢圓與點(diǎn),設(shè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓:的左、右焦點(diǎn),過傾斜角為的直線 與該橢圓相交于P,兩點(diǎn),且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn) 滿足,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,分別為橢圓的左、右焦點(diǎn),若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點(diǎn)時(shí),求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是橢圓上一點(diǎn),為橢圓的一個(gè)焦點(diǎn),且軸,焦距,則橢圓的離心率是(     )
A.B.-1C.-1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案