【題目】若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實數(shù)a的值為( )
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8
【答案】D
【解析】解:﹣ <﹣1時,x<﹣ ,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1> ﹣1;
﹣ ≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥ ﹣1;
x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,
∴ ﹣1=3或a﹣2=3,
∴a=8或a=5,
a=5時, ﹣1<a﹣2,故舍去;
﹣ ≥﹣1時,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;
﹣1≤x≤﹣ ,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣ +1;
x>﹣ ,f(x)=x+1+2x+a=3x+a+1>﹣ +1,
∴2﹣a=3或﹣ +1=3,
∴a=﹣1或a=﹣4,
a=﹣1時,﹣ +1<2﹣a,故舍去;
綜上,a=﹣4或8.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側(cè)面內(nèi)一點,若 平面,則線段長度的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為的不動點.已知函數(shù) .
(1)當(dāng),時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若的兩個不動點為,,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 總計 | |
男性市民 | |||
女性市民 | |||
總計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認為支持申辦年足球世界杯與性別有關(guān)?請說明理由.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家邊防安全條例規(guī)定:當(dāng)外輪與我國海岸線的距離小于或等于海里時,就會被警告.如圖,設(shè),是海岸線上距離海里的兩個觀察站,滿足,一艘外輪在點滿足,.
(1),滿足什么關(guān)系時,就該向外輪發(fā)出警告令其退出我國海域?
(2)當(dāng)時,間處于什么范圍內(nèi)可以避免使外輪進入被警告區(qū)域?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,,記,,.
(1)當(dāng)時,求原點關(guān)于直線的對稱點坐標(biāo);
(2)在中,求邊上中線長的最小值;
(3)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是一條居民平時散步的小道,小道兩旁是空地,當(dāng)?shù)卣疄榱素S富居民的業(yè)余生活,要在小道兩旁規(guī)劃出兩地來修建休閑活動場所,已知空地和規(guī)劃的兩塊用地(陰影區(qū)域)都是矩形,,,,若以所在直線為軸,為原點,建立如圖平面直角坐標(biāo)系,則曲線的方程為,記,規(guī)劃的兩塊用地的面積之和為.(單位:)
(1)求關(guān)于的函數(shù);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項均為正數(shù)的等差數(shù)列,其中,且成等比數(shù)列;數(shù)列的前項和為,滿足.
(1)求數(shù)列、的通項公式;
(2)如果,設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出的最小值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com