【題目】全集U={﹣1,0,1,2,3,4,5,6 },A={3,4,5 },B={1,3,6 },那么集合{ 2,﹣1,0}是( )
A.
B.
C.UA∩UB
D.
【答案】C
【解析】解:全集U={﹣1,0,1,2,3,4,5,6 },
A={3,4,5 },B={1,3,6 },
UA={﹣1,0,1,2,6},
UB={﹣1,0,2,4,5},
∴(UA)∩(UB)={ 2,﹣1,0}.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為 .
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點M(﹣2,0)的直線l與橢圓x2+2y2=2交于P1 , P2 , 線段P1P2的中點為P.設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2 , 則k1k2等于( )
A.﹣2
B.2
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx圖象與直線x﹣y﹣4=0相切于(1,f(1))
(1)求實數(shù)a,b的值;
(2)若方程f(x)=m﹣7x有三個解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,θ∈[0,2π)
(1)若函數(shù)f(x)是偶函數(shù):①求tanθ的值;②求 的值.
(2)若f(x)在 上是單調(diào)函數(shù),求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣ .
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時,函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個單調(diào)減區(qū)間內(nèi)有一個零點﹣ ,且其圖象過點A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時函數(shù)g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖示,A,B分別是橢圓C: (a>b>0)的左右頂點,F(xiàn)為其右焦點,2是|AF與|FB|的等差中項, 是|AF|與|FB|的等比中項.點P是橢圓C上異于A、B的任一動點,過點A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.
(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出N點的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com