【題目】已知函數(shù)fx)=,其中a>0a≠1,若a=時方程fx)=b有兩個不同的實根,則實數(shù)b的取值范圍是______;若fx)的值域為[3,+∞],則實數(shù)a的取值范圍是______

【答案】(1)(3, (2)[,1)∪(1,+∞)

【解析】

(1).作出的圖象,由圖象即可得到有兩個交點的情況;

(2).運用一次函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),可得值域,討論,兩種情況,即可得到所求的范圍.

解:(1).作出的圖象,

時方程有兩個不同的實根,

可得,且

即有;

(2)函數(shù),

時,時,,

時,遞減,

可得

的值域為,,可得,

解得;

時,時,,

時,遞增,

可得,

的值域為,成立,恒成立 .

綜上可得,

故答案為:(1). (3, (2). [,1)∪(1,+∞).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0對任意的xR都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的三個頂點為A(﹣3,0),B(2,1),C(﹣2,3),求:

(1)BC所在直線的方程;

(2)BC邊上中線AD所在直線的方程;

(3)BC邊上的垂直平分線DE的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l1 , l2分別是函數(shù)f(x)= 圖象上點P1 , P2處的切線,l1與l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.

(1)在平面PAD內(nèi)找一點M,使得直線CM∥平面PAB,并說明理由;
(2)證明:平面PAB⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=Asin(x+),若f(0)=

(Ⅰ)求A的值;

(Ⅱ)將函數(shù)fx)的圖象上各點的橫坐標縮短為原來的倍,縱坐標不變,得到函數(shù)gx)的圖象.

i)寫出gx)的解析式和它的對稱中心;

ii)若α為銳角,求使得不等式g(α-)<)成立的α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機地分成兩組,毎組100只,其中一組注射藥物,另一組注射藥物.表1和表2分別是注射藥物后的試驗結(jié)果.(皰疹面積單位:)

表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表

表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表

(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大小;

(2)完成下面列聯(lián)表,并回答能否有的把握認為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.

表3:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.

(1)已知G,H分別為EC,F(xiàn)B的中點,求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間[0,1]上給定曲線yx2.試在此區(qū)間內(nèi)確定點t的值,使圖中的陰影部分的面積S1S2之和最小,并求最小值.

查看答案和解析>>

同步練習冊答案