【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷(xiāo)售均價(jià)走勢(shì)如下圖所示,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月份開(kāi)始采取宏觀(guān)調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)(萬(wàn)元/平方米)與月份之間具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷(xiāo)售均價(jià);

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月的所屬季度,記不同季度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù)及公式: , ,

回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

, .

【答案】(1)回歸方程為,預(yù)測(cè)12月份該市新建住宅銷(xiāo)售均價(jià)約為1. 47萬(wàn)元/平方米;(2)分布列見(jiàn)解析,期望為

【解析】試題分析:)求出回歸系數(shù),可得回歸方程,即可預(yù)測(cè)第12月份該市新建住宅銷(xiāo)售均價(jià);( 的取值為1,2,3,求出相應(yīng)的概率,即可求的分布列和數(shù)學(xué)期望.

試題解析:

解:(1)

計(jì)算可得: , ,

所以,

所以從3月份至6月份 關(guān)于的回歸方程為.

將2016年的12月份 代入回歸方程得: ,

所以預(yù)測(cè)12月份該市新建住宅銷(xiāo)售均價(jià)約為1.47萬(wàn)元/平方米.

(2)根據(jù)題意, 的可能取值為1,2,3

,

,

所以的分布列為

因此, 的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng),它的周期是π,則以下結(jié)論正確的個(gè)數(shù)(  )
(1)f(x)的圖象過(guò)點(diǎn)(0,
(2)f(x)的一個(gè)對(duì)稱(chēng)中心是(,0)
(3)f(x)在[,]上是減函數(shù)
(4)將f(x)的圖象向右平移|φ|個(gè)單位得到函數(shù)y=3sinωx的圖象.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀(guān)測(cè)值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿(mǎn)分100分,成績(jī)均為不低于40分的整數(shù))分成六段: ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn),若橢圓上存在一點(diǎn),滿(mǎn)足以橢圓短軸為直徑的圓與線(xiàn)段相切于線(xiàn)段的中點(diǎn).

(1)求橢圓的方程;

(2)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交橢圓 兩點(diǎn),其中點(diǎn)在第一象限,過(guò)軸的垂線(xiàn),垂足為,連結(jié)并延長(zhǎng)交橢圓,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線(xiàn)a上的所有點(diǎn)到兩條直線(xiàn)m、n的距離都相等,則稱(chēng)直線(xiàn)a為“m、n的等距線(xiàn)”.在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別是所在棱中點(diǎn),M、N分別為EH、FG中點(diǎn),則在直線(xiàn)MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線(xiàn)”的條數(shù)為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額(萬(wàn)元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷(xiāo)售額

19

32

40

44

52

53

54

1)若用線(xiàn)性回歸模型擬合的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:

經(jīng)計(jì)算二次函數(shù)回歸模型和線(xiàn)性回歸模型的分別約為,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷(xiāo)售額.

參數(shù)數(shù)據(jù)及公式:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全世界人們?cè)絹?lái)越關(guān)注環(huán)境保護(hù)問(wèn)題,某監(jiān)測(cè)站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:

(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖;

(2)由頻率分布直方圖求該組數(shù)據(jù)的平均數(shù)與中位數(shù);

(3)在空氣質(zhì)量指數(shù)分別屬于的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取5天,再?gòu)闹腥我膺x取2天,求事件 “兩天空氣都為良”發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案