已知函數(shù)(為實(shí)數(shù),),,⑴若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/e/1ap354.png" style="vertical-align:middle;" />,求的表達(dá)式;
⑵設(shè),且函數(shù)為偶函數(shù),求證:.
(1),(2)證明略.
解析試題分析:(1)由于的表達(dá)式與有關(guān),而確定的表達(dá)式只需求出待定系數(shù),因此只要根據(jù)題目條件聯(lián)立關(guān)于的兩個(gè)關(guān)系即可;(2)由為偶函數(shù)可先確定,而可不妨假設(shè),則,代入的表達(dá)式即可判斷的符號.
試題解析:⑴因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/5/1bd0o2.png" style="vertical-align:middle;" />,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/a/h9azd1.png" style="vertical-align:middle;" />的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/e/1ap354.png" style="vertical-align:middle;" />,所以,所以,所以,所以;
⑵因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/a/h9azd1.png" style="vertical-align:middle;" />是偶函數(shù),所以,又,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/d/1c9nc1.png" style="vertical-align:middle;" />,不妨設(shè),則,又,所以,此時(shí),所以;
考點(diǎn):二次函數(shù)表達(dá)式的求解,分段函數(shù)求值問題,化歸與轉(zhuǎn)化的思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知定義在上的偶函數(shù)滿足:且在區(qū)間上
單調(diào)遞增,那么,下列關(guān)于此函數(shù)性質(zhì)的表述:
①函數(shù)的圖象關(guān)于直線對稱; ②函數(shù)是周期函數(shù);
③當(dāng)時(shí),; ④函數(shù)的圖象上橫坐標(biāo)為偶數(shù)的點(diǎn)都是函數(shù)的極小值點(diǎn)。 其中正確表述的番號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)英國相關(guān)機(jī)構(gòu)判斷,MH370在南印度洋海域消失.中國兩艦艇隨即在邊長為100海里的某正方形ABCD(如圖)海域內(nèi)展開搜索.兩艘搜救船在A處同時(shí)出發(fā),沿直線AP、AQ向前聯(lián)合搜索,且(其中點(diǎn)P、Q分別在邊BC、CD上),搜索區(qū)域?yàn)槠矫嫠倪呅蜛PCQ圍成的海平面.設(shè),搜索區(qū)域的面積為.
(1)試建立與的關(guān)系式,并指出的取值范圍;
(2)求的最大值,并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種商品,現(xiàn)在定價(jià)p元,每月賣出n件,設(shè)定價(jià)上漲x成,每月賣出數(shù)量減少y成,每月售貨總金額變成現(xiàn)在的z倍.
(1)用x和y表示z;
(2)設(shè)x與y滿足y=kx(0<k<1),利用k表示當(dāng)每月售貨總金額最大時(shí)x的值;
(3)若y=x,求使每月售貨總金額有所增加的x值的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,n臺機(jī)器人M1,M2,……,Mn位于一條直線上,檢測臺M在線段M1 Mn上,n臺機(jī)器人需把各自生產(chǎn)的零件送交M處進(jìn)行檢測,送檢程序設(shè)定:當(dāng)Mi把零件送達(dá)M處時(shí),Mi+1即刻自動出發(fā)送檢(i=1,2,……,n-1)已知Mi的送檢速度為V(V>0), 且記,n臺機(jī)器人送檢時(shí)間總和為f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若存在實(shí)數(shù)對(),使得等式對定義域中的每一個(gè)都成立,則稱函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為 “()型函數(shù)”,并說明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對;
(3)已知函數(shù)是“型函數(shù)”,對應(yīng)的實(shí)數(shù)對為,當(dāng)時(shí),,若當(dāng)時(shí),都有,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/4/11v3z2.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對任意的,總有;
②;
③當(dāng),且時(shí),成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*),經(jīng)過點(diǎn)(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com