已知橢圓的兩焦點與短軸的一個端點連結成等腰直角三角形,直線是拋物線的一條切線。

(1)   求橢圓方程;

(2)   直線交橢圓于A、B兩點,若點P滿足(O為坐標原點), 判斷點P是否在橢圓上,并說明理由。

 

【答案】

 

【解析】本試題結合了導數(shù)的幾何意義來求解橢圓的方程以直線與橢圓的位置關系的綜合運用。

(1)利用已知中切線的斜率就是該點的導數(shù)值,然后得到直線方程,同時利用橢圓的性質得到參數(shù)a,bc,的關系式得到求解。

(2)聯(lián)立方程組,結合已知中的向量關系,得到坐標關系,利用點P的坐標,代入橢圓中,判定是否符合題意。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,直線x-y+b=0是拋物線y2=4x的一條切線.
(1)求橢圓的方程;
(2)過點S(0,-
13
)
的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年山東省實驗中學綜合測試理)(本小題滿分13分)已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,直線是拋物線的一條切線.

   (1)求橢圓的方程;

   (2)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一

        個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,

        請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,直線是拋物線的一條切線.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的動直線L交橢圓CAB兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省高三下學期二輪復習數(shù)學理卷 題型:解答題

(本小題滿分12分)

已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,直線是拋物線的一條切線.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的動直線L交橢圓CAB兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案