(2013•牡丹江一模)已知P1、P2、…、P2013是拋物線y2=4x上的點(diǎn),它們的橫坐標(biāo)依次為x1、x2、…、x2013,F(xiàn)是拋物線的焦點(diǎn),若x1+x2+…+x2013=10,則|P1F|+|P2F|+…|P2013F|=
2023
2023
分析:根據(jù)拋物線的定義得拋物線上的點(diǎn)到焦點(diǎn)的距離等于該點(diǎn)到準(zhǔn)線的距離,因此求出拋物線的準(zhǔn)線方程,結(jié)合題中數(shù)據(jù)加以計(jì)算,即可得到本題答案.
解答:解:∵拋物線y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線為x=-1,
∴根據(jù)拋物線的定義,Pi(i=1,2,3,…,2013)到焦點(diǎn)的距離等于Pi到準(zhǔn)線的距離,即|PiF|=xi+1,
可得|P1F|+|P2F|+…|P2013F|=(x1+1)+(x2+1)+…+(x2013+1)=(x1+x2+…+x2013)+2013,
∵x1+x2+…+x2013=10,
∴|P1F|+|P2F|+…|P2013F|=10+2013=2023.
故答案為:2023
點(diǎn)評(píng):本題給出拋物線上2013個(gè)點(diǎn)的橫坐標(biāo)之和,求它們到焦點(diǎn)的距離之和.著重考查了拋物線的定義、標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)在球O內(nèi)任取一點(diǎn)P,使得P點(diǎn)在球O的內(nèi)接正方體中的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)復(fù)數(shù) (1+i)z=i( i為虛數(shù)單位),則
.
z
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=
1+1nx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)知果當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個(gè)側(cè)面中面積最大的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案