【題目】某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬元)如下:

月份

1

2

3

利潤(rùn)

2

3.9

5.5

(1)求利潤(rùn)關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測(cè)4月和5月的利潤(rùn);

(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開始利潤(rùn)超過1000萬?

相關(guān)公式:.

【答案】(1);(2)905萬;(3)6月

【解析】試題分析:(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把分別代入,回歸直線方程,即可求解;(3)令,即可求解的值,得出結(jié)果.

試題解析:(1,,

故利潤(rùn)關(guān)于月份的線性回歸方程.

2)當(dāng)時(shí),,故可預(yù)測(cè)月的利潤(rùn)為.

當(dāng)時(shí),, 故可預(yù)測(cè)月的利潤(rùn)為.

3)由,故公司2016年從月份開始利潤(rùn)超過.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,,中點(diǎn), 點(diǎn)分別為的中點(diǎn), 沿折起到 的位置,使得平面平面(如圖 ).

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù),函數(shù),當(dāng)時(shí),取得極大值,且函數(shù)

的圖象關(guān)于點(diǎn)對(duì)稱.

(1)求函數(shù)的表達(dá)式;

(2)求證:當(dāng)時(shí), 為自然對(duì)數(shù)的底數(shù);

(3),數(shù)列中是否存在?若存在,求出所有相等的兩項(xiàng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列問題中是古典概型的是(  )
A.種下一粒楊樹種子,求其能長(zhǎng)成大樹的概率
B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率
C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5的概率
D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的n值是8,則從集合中所有滿足條件的S0值為

A.0 B.1 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為50的樣本,則應(yīng)從高二年級(jí)抽取名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于用斜二測(cè)畫法畫直觀圖的說法中,正確的是( )
A.水平放置的正方形的直觀圖不可能是平行四邊形
B.平行四邊形的直觀圖仍是平行四邊形
C.兩條相交直線的直觀圖可能是平行直線
D.兩條垂直的直線的直觀圖仍互相垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值4,最小值1,設(shè)

(1)求的值;

(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x1,x∈{x∈N|1≤x≤4},則函數(shù)f(x)的值域?yàn)?/span>

查看答案和解析>>

同步練習(xí)冊(cè)答案