【題目】輸入x,求函數y=的值的程序框圖如圖C17所示.
(1)指出程序框圖中的錯誤之處并寫出正確的算法步驟.
(2)重新繪制程序框圖,并回答下面提出的問題.
①要使輸出的值為7,則輸入的x的值應為多少?
②要使輸出的值為正數,則輸入的x應滿足什么條件?
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求曲線在點處的切線方程;
(2)設,計算的導數.
【答案】(1).(2).
【解析】試題分析:(1)由導數的基本定義就出斜率,根據點斜式寫出切線方程;(2), .
試題解析:
(1),則,
又,∴所求切線方程為,即.
(2), .
【題型】解答題
【結束】
18
【題目】對某校高一年級學生參加社區(qū)服務次數進行統計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
(1)求出表中及圖中的值;
(2)若該校高一學生有800人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間內的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況.通過隨機抽樣,電力公司獲得了50戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).
(1)求a,b的值;
(2)為了解用電量較大的用戶用電情況,在第5、6兩組用分層抽樣的方法選取5戶 .
①求第5、6兩組各取多少戶?
②若再從這5戶中隨機選出2戶進行入戶了解用電情況,求這2戶中至少有一戶月平均用電量在[1000,1200]范圍內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求二面角B﹣AC﹣A1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面上動點M到直線x=﹣1的距離比它到點F(2,0)的距離少1.
(1)求動點M的軌跡E的方程;
(2)已知點B(﹣1,0),設過點(1,0)的直線l與軌跡E交于不同的兩點P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=a,BC=1,∠BAD=60°,E為線段CD(端點C、D除外)上一動點,將△ADE沿直線AE翻折,在翻折過程中,若存在某個位置使得直線AD與BC垂直,則a的取值范圍是( )
A.( ,+∞)
B.( ,+∞)
C.( +1,+∞)
D.( +1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方.
(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自平面上一點O引兩條射線OA,OB,P在OA上運動,Q在OB上運動且保持| |為定值2 (P,Q不與O重合).已知∠AOB=120°,
(I)PQ的中點M的軌跡是的一部分(不需寫具體方程);
(II)N是線段PQ上任﹣點,若|OM|=1,則 的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com