已知函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a.設(shè)函數(shù)F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,則對于F(x)有如下說法:

①定義域為[-b,b];②是奇函數(shù);③最小值為0;④在定義域內(nèi)單調(diào)遞增.

其中正確說法的個數(shù)有

A.4                   B.3                   C.2                   D.1

C

解析:∵f(x)的定義域為[a,b],∴f(-x)的定義域為[-b,-a].∵0<b<-a,

∴F(x)=[f(x)]2-[f(-x)]2的定義域為[-b,b],①正確.

F(-x)=[f(-x)]2-[f(x)]2=-F(x),∴F(x)為奇函數(shù),②正確.

③④用數(shù)形結(jié)合易知不正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習(xí)冊答案