【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)f(x)的任意一條切線都不與y軸垂直,求a的取值范圍;
(2)當(dāng)a=2時(shí),求使得f(x)+k>0成立的最小正整數(shù)k.

【答案】
(1)解:由已知函數(shù)f(x)的任意一條切線都不與x軸平行等價(jià)于f'(x)=0在R上無(wú)解.…

f'(x)=(x+1)ex﹣a,…

記g(x)=(x+1)ex﹣a,則g'(x)=(x+2)ex

令g'(x)=0,則x=﹣2,所以 ,…

又當(dāng)x→+∞時(shí),g(x)→+∞

所以須且只需gmin(x)>0…

解得a<﹣e﹣2


(2)當(dāng)a=2時(shí),要使f(x)+k>0恒成立,即xex﹣2x>﹣k恒成立,…6分

令f(x)=xex﹣2x,則f'(x)=h(x)=(x+1)ex﹣2,h'(x)=(x+2)ex,

當(dāng)x∈(﹣∞,﹣2)時(shí),h'(x)<0,函數(shù)h(x)在(﹣∞,﹣2)上單調(diào)遞減;

當(dāng)x∈(﹣2,+∞)時(shí),h'(x)>0,函數(shù)h(x)的(﹣2,+∞)上單調(diào)遞增.…

又因?yàn)閤∈(﹣∞,﹣1)時(shí),h(x)<0,且h(0)=﹣1<0,h(1)=2e2﹣2>0,

所以,存在唯一的x0∈(0,1),使得 ,…

當(dāng)x∈(﹣∞,x0)時(shí),f'(x)<0,函數(shù)f(x)在(﹣∞,x0)上單調(diào)遞減;

當(dāng)x∈(x0,+∞)時(shí),f'(x)>0,函數(shù)f(x)在(x0,+∞)上單調(diào)遞增.

所以,當(dāng)x=x0時(shí),f(x)取到最小值.…

,…

因?yàn)閤0∈(0,1),所以f(x0)∈(﹣1,0),…

從而使得f(x)+k>0恒成立的最小正整數(shù)k的值為1.…


【解析】(1)由已知函數(shù)f(x)的任意一條切線都不與x軸平行等價(jià)于f'(x)=0在R上無(wú)解,記g(x)=(x+1)ex﹣a,通過(guò)求導(dǎo)得到g(x)的最小值,且最小值要大于零,即可得到a的取值范圍,(2)當(dāng)a=2時(shí),其恒成立可轉(zhuǎn)化為xex﹣2x>﹣k恒成立,令f(x)=xex﹣2x,通過(guò)求導(dǎo),使得f(x)+k>0恒成立的最小正整數(shù)k的值為1.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體ABCDEF中,ABCD為直角梯形,AB∥CD,∠DAB=90°,四邊形ADEF為等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.

(1)求證:平面ABCD⊥平面ADEF;
(2)求直線CF與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個(gè)不同的根,則實(shí)數(shù)t的取值范圍為( 。
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長(zhǎng)為2的正三角形,AB=BD= ,PB=3.

(1)求證:平面PAD⊥平面ABCD;
(2)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時(shí),求二面角A﹣BD﹣Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中, ,O為平面內(nèi)一點(diǎn),且 ,M為劣弧 上一動(dòng)點(diǎn),且 ,則p+q的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的程序框圖中,若輸入n=40,則輸出的結(jié)果為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, ,平面ABCD⊥平面ABFE.

(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,則x>1;
③“若a>b>0且c<0,則 ”的逆否命題;
④若p且q為假命題,則p,q均為假命題.
其中真命題是( )
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案