設(shè)函數(shù).
(1)若函數(shù)圖像上的點(diǎn)到直線距離的最小值為,求的值;
(2)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實(shí)數(shù)的取值范圍;
(3)對于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)的
“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.
(1)
(2)
(3)
【解析】
試題分析:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070812362230731774/SYS201307081238504380852735_DA.files/image004.png">,得: 2分
則點(diǎn)到直線的距離為
即 4分
(2)法1:由題意可得不等式恰有三個整數(shù)解,
所以 6分
令,由
函數(shù)的一個零點(diǎn)在區(qū)間內(nèi),
則另一個零點(diǎn)在區(qū)間內(nèi) 8分
所以 10分
法2:恰有三個整數(shù)解,所以,即 6分
又 8分
10分
(3)設(shè)則
可得,
所以當(dāng),
則的圖像在處有公共點(diǎn) 12分
設(shè)存在分界線,方程為
由,恒成立,
即化為恒成立
由 14分
下面證明,
令
可得
所以恒成立,
即恒成立
所求分界線為: 16分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
px+1 |
x+1 |
1 |
2 |
n |
cn |
-1 |
anSn2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
x2+x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com