【題目】我省城鄉(xiāng)居民社會(huì)養(yǎng)老保險(xiǎn)個(gè)人年繳費(fèi)分100,200,300,400,500,600,700,800,900,1000(單位:元)十個(gè)檔次,某社區(qū)隨機(jī)抽取了50名村民,按繳費(fèi)在100:500元,600:1000元,以及年齡在20:39歲,40:59歲之間進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)如下:
100﹣500元 | 600﹣1000 | 總計(jì) | |
20﹣39 | 10 | 6 | 16 |
40﹣59 | 15 | 19 | 34 |
總計(jì) | 25 | 25 | 50 |
(1)用分層抽樣的方法在繳費(fèi)100:500元之間的村民中隨機(jī)抽取5人,則年齡在20:39歲之間應(yīng)抽取幾人?
(2)在繳費(fèi)100:500元之間抽取的5人中,隨機(jī)選取2人進(jìn)行到戶走訪,求這2人的年齡都在40:59歲之間的概率.
【答案】解:(1)設(shè)抽取x人,則,解得x=2,
即年齡在20:39歲之間應(yīng)抽取2人.
(2)設(shè)在繳費(fèi)100:500元之間抽取的5人中,年齡在20:39歲年齡的兩人為A,B,在40:59歲之間為a,b,c,
隨機(jī)選取2人的情況有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),
(a,b),(a,c),(b,c),共10種,
年齡都在40:59歲之間的有(a,b),(a,c),(b,c),共3種,
則對(duì)應(yīng)的概率P=.
【解析】(1)根據(jù)分層抽樣的定義建立比例關(guān)系進(jìn)行求解即可.
(2)利用列舉法結(jié)合古典概型的概率公式進(jìn)行期間.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分層抽樣的相關(guān)知識(shí),掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,它們的終邊分別交單位圓于A,B兩點(diǎn).已知A,B兩點(diǎn)的橫坐標(biāo)分別是 , .
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且僅有一個(gè)是,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有高級(jí)教師20人,中級(jí)教師30人,其他教師若干人,為了了解該校教師的工資收入情況,擬按分層抽樣的方法從該校所有的教師中抽取20人進(jìn)行調(diào)查.已知從其他教師中共抽取了10人,則該校共有教師人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
。1)若函數(shù)是單調(diào)函數(shù),求的取值范圍;
(2)求證:當(dāng)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集為R,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1(n∈N+)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,下頂點(diǎn),且離心率.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)經(jīng)過點(diǎn)且斜率為的直線交橢圓于, 兩點(diǎn).在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a1=2,點(diǎn)(an , an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,….
(1)求a3 , a4的值;
(2)證明數(shù)列{lg(1+an)}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com