【題目】如圖,已知點(diǎn)H在正方體的對(duì)角線上,∠HDA=

(1)求DH所成角的大。

(2)求DH與平面所成角的正弦值.

【答案】(1);(2)

【解析】

1)建立空間直角坐標(biāo)系,設(shè)Hm,m,1)(m0),求出、,利用向量的夾角公式可求DHCC′所成角的大;

2)求出平面A1BD的法向量,利用向量的夾角公式,即可得出結(jié)論.

(1)以為原點(diǎn),射線軸的正半軸建立空間直角坐標(biāo)系

設(shè)Hmm,1)(m0),

1,0,0),0,0,1),連接BDB1D1

m,m1)(m0),

由已知,60°,∴可得2m,解得m

,1),

cos,

,45°,即DHCC′所成角的大小為45°;

(2)設(shè)平面的法向量為,∴,令是平面的一個(gè)法向量.

設(shè)DH與平面所成的角為

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩縣城相距,現(xiàn)計(jì)劃在兩縣城外位于線段上選擇一點(diǎn)建造一個(gè)兩縣城的公共垃圾處理廠,已知垃圾處理廠對(duì)城市的影響度與所選地點(diǎn)到城市的的距離關(guān)系最大,其他因素影響較小暫時(shí)不考慮,垃圾處理廠對(duì)城和城的總影響度為對(duì)城與城的影響度之和. 點(diǎn)到城的距離為,建在處的垃圾處理廠對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)2.7;垃圾處理廠對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為 ;且當(dāng)垃圾處理廠與城距離為時(shí)對(duì)城和城的總影響度為0.029.

(1) 表示成的函數(shù);

(2) 討論⑴中函數(shù)的單調(diào)性,并判斷在線段上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城和城的總影響度最?若存在,求出該點(diǎn)到城的距離;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個(gè)數(shù)

10

30

40

20

(1)若將頻率視為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率;(結(jié)果用分?jǐn)?shù)表示)

(2)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再?gòu)某槿〉?/span>個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若,則下列結(jié)論:①;②;③;④,其中正確的序號(hào)為___________(把你認(rèn)為正確的結(jié)論都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】麻團(tuán)又叫煎堆,呈球形華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時(shí)以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒(méi)有。一個(gè)長(zhǎng)方體形狀的紙盒中恰好放入4個(gè)球形的麻團(tuán),它們彼此相切,同時(shí)與長(zhǎng)方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長(zhǎng)方體紙盒的表面積為576 ,則一個(gè)麻團(tuán)的體積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)是定義在R上的周期為2的奇函數(shù),時(shí),,的值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】M是橢圓T1ab0)上任意一點(diǎn),F是橢圓T的右焦點(diǎn),A為左頂點(diǎn),B為上頂點(diǎn),O為坐標(biāo)原點(diǎn),如下圖所示,已知|MF|的最大值為3,且MAF面積最大值為3

1)求橢圓T的標(biāo)準(zhǔn)方程

2)求ABM的面積的最大值S0.若點(diǎn)Nx,y)滿足xZ,yZ,稱點(diǎn)N為格點(diǎn).問(wèn)橢圓T內(nèi)部是否存在格點(diǎn)G,使得ABG的面積S∈(6S0)?若存在,求出G的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnx

1)若a4,求函數(shù)fx)的單調(diào)區(qū)間;

2)若函數(shù)fx)在區(qū)間(01]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

3)若x1、x2R+,且x1x2,求證:(lnx1lnx2)(x1+2x2≤3x1x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(1),過(guò)點(diǎn)F且不與軸重合的直線與橢圓C交于AB兩點(diǎn),點(diǎn)P在橢圓上,且滿足.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案