某市2010年4月1日—4月30日對空氣污染指數(shù)的監(jiān)測數(shù)據(jù)如下(主要污染物為可吸入顆粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成頻率分布表;
(2)作出頻率分布直方圖;
(3)根據(jù)國家標準,污染指數(shù)在0~50之間時,空氣質(zhì)量為優(yōu);在51~100之間時,為良;在101~150之間時,為輕微污染;在151~200之間時,為輕度污染.
請你依據(jù)所給數(shù)據(jù)和上述標準,對該市的空氣質(zhì)量給出一個簡短評價.
(1)頻率分布表:
科目:高中數(shù)學
來源:
題型:解答題
為了了解某班的男女生學習體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)。
科目:高中數(shù)學
來源:
題型:解答題
某校50名學生參加智力答題活動,每人回答3個問題,答對題目個數(shù)及對應人數(shù)統(tǒng)計結果見下表:
科目:高中數(shù)學
來源:
題型:解答題
甲、乙兩人參加普法知識競賽,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人各抽一道(不重復).
科目:高中數(shù)學
來源:
題型:解答題
為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如下數(shù)據(jù):
科目:高中數(shù)學
來源:
題型:解答題
A、B兩個試驗方案在某科學試驗中成功的概率相同,已知A、B兩個方案至少一個方案試驗成功的概率是0.36.
科目:高中數(shù)學
來源:
題型:解答題
因金融危機,某公司的出口額下降,為此有關專家提出兩種促進出口的方案,每種方案都需要分兩年實施。若實施方案一,預計第一年可以使出口額恢復到危機前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實施方案二,預計第一年可以使出口額恢復到危機前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。實施每種方案第一年與第二年相互獨立。令表示方案實施兩年后出口額達到危機前的倍數(shù)。
科目:高中數(shù)學
來源:
題型:解答題
甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判.設各局中雙方獲勝的概率均為,各局比賽的結束相互獨立,第1局甲當裁判.
科目:高中數(shù)學
來源:
題型:解答題
某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)分組 頻數(shù) 頻率 分組 頻數(shù) 頻率 [41,51) 2 [81,91) 10 [51,61) 1 [91,101) 5 [61,71) 4 [101,111) 2 [71,81) 解析試題分析:(1)頻率分布表: 分組 頻數(shù) 頻率 分組 頻數(shù) 頻率 [41,51) 2 [81,91) 10 [51,61) 1 [91,101) 5 [61,71) 4 [101,111) 2 [71,81)
(Ⅰ)若該班男女生平均分數(shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機抽取2名,優(yōu)秀的人數(shù)記為,求的分布列和數(shù)學期望.
根據(jù)上表信息解答以下問題:答對題目個數(shù)
0
1
2
3
人數(shù)
5
10
20
15
(Ⅰ)從50名學生中任選兩人,求兩人答對題目個數(shù)之和為4或5的概率;
(Ⅱ)從50名學生中任選兩人,用X表示這兩名學生答對題目個數(shù)之差的絕對值,求隨機變量X的分布列及數(shù)學期望EX.
(1)甲抽到選擇題,乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?
若用表中數(shù)據(jù)所得頻率代替概率.現(xiàn)從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.處罰金額x(元)
0
5
10
15
20
會闖紅燈的人數(shù)y
80
50
40
20
10
(Ⅰ)求這兩種金額之和不低于20元的概率;
(Ⅱ)若用X表示這兩種金額之和,求X的分布列和數(shù)學期望.
(1)求兩個方案均獲成功的概率;
(2)設試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望.
(1)寫出的分布列;
(2)實施哪種方案,兩年后出口額超過危機前出口額的概率更大?
(3)不管哪種方案,如果實施兩年后出口額達不到、恰好達到、超過危機前出口額,預計利潤分別為萬元、萬元、萬元,問實施哪種方案的平均利潤更大?
(Ⅰ)求第4局甲當裁判的概率;
(Ⅱ)X表示前4局中乙當裁判的次數(shù),求X的數(shù)學期望.
(1)隨機選取1件產(chǎn)品,求能夠通過檢測的概率;
(2)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(3)隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.
版權聲明:本站所有文章,圖片來源于網(wǎng)絡,著作權及版權歸原作者所有,轉(zhuǎn)載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號