【題目】在平面直角坐標(biāo)系xOy中,橢圓 的離心率為 ,直線y=x被橢圓C截得的線段長(zhǎng)為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)原點(diǎn)的直線與橢圓C交于兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M,N兩點(diǎn).設(shè)直線BD,AM斜率分別為k1 , k2 , 證明存在常數(shù)λ使得k1=λk2 , 并求出λ的值.

【答案】解:(Ⅰ)由題意知,e= = ,a2﹣b2=c2,

則a2=4b2

則橢圓C的方程可化為x2+4y2=a2

將y=x代入可得x=± a,

因此 a= ,解得a=2,則b=1.

∴橢圓C的方程為 +y2=1;

(Ⅱ)設(shè)A(x1,y1)(x1y1≠0),D(x2,y2),

則B(﹣x1,﹣y1).

∵直線AB的斜率kAB= ,

又AB⊥AD,

∴直線AD的斜率kAD=﹣

設(shè)AD方程為y=kx+m,

由題意知k≠0,m≠0.

聯(lián)立 ,得(1+4k2)x2+8kmx+4m2﹣4=0.

∴x1+x2=﹣

因此y1+y2=k(x1+x2)+2m=

由題意可得k1= =﹣ =

∴直線BD的方程為y+y1= (x+x1).

令y=0,得x=3x1,即M(3x1,0).

可得k2=﹣

∴k1=﹣ k2,即λ=﹣

因此存在常數(shù)λ=﹣ 使得結(jié)論成立


【解析】(Ⅰ)由橢圓離心率得到a,b的關(guān)系,化簡(jiǎn)橢圓方程,和直線方程聯(lián)立后求出交點(diǎn)的橫坐標(biāo),把弦長(zhǎng)用交點(diǎn)橫坐標(biāo)表示,則a的值可求,進(jìn)一步得到b的值,則橢圓方程可求;(Ⅱ)設(shè)出A,D的坐標(biāo)分別為(x1,y1)(x1y1≠0),(x2,y2),用A的坐標(biāo)表示B的坐標(biāo),把AB和AD的斜率都用A的坐標(biāo)表示,寫出直線AD的方程,和橢圓方程聯(lián)立后利用根與系數(shù)關(guān)系得到AD橫縱坐標(biāo)的和,求出AD中點(diǎn)坐標(biāo),則BD斜率可求,再寫出BD所在直線方程,取y=0得到M點(diǎn)坐標(biāo),由兩點(diǎn)求斜率得到AM的斜率,由兩直線斜率的關(guān)系得到λ的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過(guò)點(diǎn)( , ).
(1)求函數(shù)f(x)在[0, ]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若x=C是曲線y=f(x)的一條對(duì)稱軸,且△ABC的面積為2 ,a+b=6,求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)圓的方程為(x+2 2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2 ,0)是圓內(nèi)一點(diǎn),E為圓周上任一點(diǎn),線EF2的垂直平分線EF1的連線交于P點(diǎn),設(shè)動(dòng)點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點(diǎn),與x軸交于點(diǎn)M.
(i)是否存在定點(diǎn)M,使得 + 為定值,若存在,求出點(diǎn)M坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由;
(ii)在滿足(i)的條件下,連接并延長(zhǎng)AO交曲線C于點(diǎn)Q,試求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對(duì)于任意x≥0,f(x)≥ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(2x2+x﹣y)n的展開(kāi)式中各項(xiàng)系數(shù)的和為32,則展開(kāi)式中x5y2的系數(shù)為 . (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是(
A.
B. ,
C.
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的面積為8,cosA= ,D為BC上一點(diǎn), = + ,過(guò)點(diǎn)D做AB,AC的垂線,垂足分別為E,F(xiàn),則 =

查看答案和解析>>

同步練習(xí)冊(cè)答案