(2008•浦東新區(qū)二模)不等式組
x+2y≤2
x-y≥1
y≥0
表示的平面區(qū)域中點P(x,y)到直線x+3y=9距離的最小值是
2
10
3
2
10
3
分析:首先根據(jù)題意做出可行域,欲求區(qū)域D中的點到直線x+3y=9距離的最小值,由其幾何意義為區(qū)域D的點A(
4
3
,
1
3
)到直線x+3y=9距離為所求,代入計算可得答案.
解答:解:如圖可行域為陰影部分,
由其幾何意義為區(qū)域D的點A(
4
3
,
1
3
)到直線x+3y=9距離,即為所求,
由點到直線的距離公式得:
d=
|
4
3
+ 3×
1
3
-9|
12+32
=
2
10
3
,
則區(qū)域D中的點到直線x+3y=9距離的最小值等于
2
10
3

故答案為:
2
10
3
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.巧妙識別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)二模)若函數(shù)f(x)=
2x,(x≥4)
f(x+3),(x<4)
,則f(log23)=
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)二模)一場特大暴風(fēng)雪嚴(yán)重損壞了某鐵路干線供電設(shè)備,抗災(zāi)指揮部決定在24小時內(nèi)完成搶險工程.經(jīng)測算,工程需要15輛車同時作業(yè)24小時才能完成,現(xiàn)有21輛車可供指揮部調(diào)配.
(1)若同時投入使用,需要多長時間能夠完成工程?(精確到0.1小時)
(2)現(xiàn)只有一輛車可以立即投入施工,其余20輛車需要從各處緊急抽調(diào),每隔40分鐘有一輛車可以到達并投入施工,問:24小時內(nèi)能否完成搶險工程?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

(2008•浦東新區(qū)二模)問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學(xué)的問題解答過程:
解:設(shè)A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并給出當(dāng)點M的坐標(biāo)改為(2,m)(m>0)時,你認為正確的結(jié)論:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案