(2008•浦東新區(qū)二模)問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
解:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:
p=m(0<m<4)
p=m(0<m<4)
分析:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2
x1-x2
=1
,y1+y2=2m所以p=m,將直線方程與拋物線的方程聯(lián)立,判別式大于0求出m的范圍.
解答:解:設A(x1,y1),B(x2,y2),
則y12=2px1,y22=2px2
兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).
kAB=
y1-y2
x1-x2
=1
,y1+y2=2m
所以1=
2p
2m

所以p=m
因為
y2=2px
y-m=x-2
消去x得
y2-2py+2pm-4p=0
即y2-2my+2m2-4m=0
△=4m2-4(2m2-4m)>0
解得0<m<4
故答案為:p=m(0<m<4)
點評:解決直線與圓錐曲線相交有關弦中點的問題,常利用點差法來解決,但注意需要將直線的方程與圓錐曲線的方程聯(lián)立,判別式大于0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)二模)若函數(shù)f(x)=
2x,(x≥4)
f(x+3),(x<4)
,則f(log23)=
24
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)二模)一場特大暴風雪嚴重損壞了某鐵路干線供電設備,抗災指揮部決定在24小時內完成搶險工程.經(jīng)測算,工程需要15輛車同時作業(yè)24小時才能完成,現(xiàn)有21輛車可供指揮部調配.
(1)若同時投入使用,需要多長時間能夠完成工程?(精確到0.1小時)
(2)現(xiàn)只有一輛車可以立即投入施工,其余20輛車需要從各處緊急抽調,每隔40分鐘有一輛車可以到達并投入施工,問:24小時內能否完成搶險工程?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)二模)不等式組
x+2y≤2
x-y≥1
y≥0
表示的平面區(qū)域中點P(x,y)到直線x+3y=9距離的最小值是
2
10
3
2
10
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案