【題目】設,則的最小值為______.
【答案】
【解析】
設(其中,則),其幾何意義為兩點,的距離的平方,令,,
則,而是拋物線上的點到準線的距離,從而可以看作拋物線上的點到焦點距離和到上的點的距離的和,即的最小值是點到上的點的距離的最小值.
設(其中,則),其幾何意義為兩點,的距離的平方,令,,
由的導數(shù)為,,
點在曲線上,又,
令,,
則,而是拋物線上的點到準線的距離,即拋物線上的點到焦點的距離,
從而可以看作拋物線上的點到焦點距離和到上的點的距離的和,即,如圖所示:
由兩點之間線段最短,得的最小值是點到上的點的距離的最小值,由點到直線上垂線段最短,則就最小,即最小,
設,則,即,解得,即
點到的距離就是點到上的點的距離的最小值,
故的最小值為,即的最小值為.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,射線l:(x≥0),曲線C1的參數(shù)方程為(為參數(shù)),曲線C2的方程為;以原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C3的極坐標方程為.
(1)寫出射線l的極坐標方程以及曲線C1的普通方程;
(2)已知射線l與C2交于O,M,與C3交于O,N,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)在線段BC是否存在一點E,使得ND⊥FC ,若存在,求出EC的長并證明;
若不存在,請說明理由.
(2)求四面體NEFD體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為棱中點,底面是邊長為2的正方形,為正三角形,平面與棱交于點,平面與平面交于直線,且平面平面.
(1)求證:;
(2)求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,且離心率為,圓.
(1)求橢圓C的方程,
(2)點P在圓D上,F為橢圓右焦點,線段PF與橢圓C相交于Q,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)你能否估計哪個班級學生平均每周咀嚼檳榔的顆數(shù)較多?
(2)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)若為線段的中點,求證:平面;
(3)求多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com