設(shè)函數(shù)f(x)=g(x)=-x2bx,若yf(x)的圖象與yg(x)的圖象有且僅有兩個不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是 (  ).
A.x1x2>0,y1y2>0
B.x1x2<0,y1y2>0
C.x1x2>0,y1y2<0
D.x1x2<0,y1y2<0
C
設(shè)F(x)=x3bx2+1,則方程F(x)=0與f(x)=g(x)同解,
故其有且僅有兩個不同零點(diǎn) x1,x2.
F′(x)=3x2-2bx,由F′(x)=0,得x=0或xb.
易知x=0,xbF(x)的極值點(diǎn).
F(0)=1.
由題意F(x)的圖象與x軸有兩個公共點(diǎn).
因此,F=0,從而b.
不妨設(shè)x1x2,則x2b.
所以F(x)=(xx1)(x)2,比較F(x)的系數(shù).
∴-x1=1,∴x1=-.
x1x2>0,
y1y2<0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學(xué)開始時,學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時間(單位:min),可有以下的關(guān)系:
(1)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時更強(qiáng)一些?
(2)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時間?
(3)若一個新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域?yàn)镽,且定義如下:(其中是非空實(shí)數(shù)集).若非空實(shí)數(shù)集滿足,則函數(shù)的值域?yàn)?u>      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于任意x∈[1,2],都有(ax+1)2≤4成立,則實(shí)數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費(fèi),預(yù)計當(dāng)每件產(chǎn)品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤L最大?并求出L的最大值Q(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=x2+2xa沒有零點(diǎn),則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=2-|x-1|m有零點(diǎn),則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

根據(jù)下表,用二分法求函數(shù)在區(qū)間上的零點(diǎn)的近似值(精確度)是                  






查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某鎮(zhèn)政府為了更好地服務(wù)于農(nóng)民,派調(diào)查組到某村考察.據(jù)了解,該村有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動員部分農(nóng)民從事蔬菜加工.據(jù)估計,若能動員x(x>0)戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為3 (a>0)萬元.
(1)在動員x戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動員前從事蔬菜種植的農(nóng)民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求a的最大值.

查看答案和解析>>

同步練習(xí)冊答案