ABC中,AB =9,AC=12,BC=18,DAC上一點, .在AB邊上取一點E,得到△ADE,若圖中兩三角形相似,則DE的長是(  )

A.14                     B.6                       C.8                D.6或8

思路解析:此題需分類討論.當DEBC時,DE長為6,當DE不平行BC時,△ADE∽△ABC,此時,DE長為8.

答案:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在以下關于向量的命題中,不正確的是( 。
A、若向量
a
=(1,2),向量
b
=(-2,1),則
a
b
B、△ABC中,有
AB
+
BC
=
AC
C、△ABC中
AB
CA
的夾角為角A
D、已知四邊形ABCD,則四邊形ABCD是菱形的充要條件是
AB
=
DC
,且
|
AB
|=|
AD
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2
ωx
2
+sinωx-1(ω>0)在一個周期內(nèi)的圖象如圖所示,且在△ABC中AB=AC=
6

(1)化簡該函數(shù)表示式,并求出該函數(shù)的值域;
(2)求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

水平放置的△ABC斜二測直觀圖如圖所示,已知A′C′=3,B′C′=2,則△ABC中AB邊上中線的實際長度為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普寧市模擬)連擲兩次骰子分別得到點數(shù)m、n,向量
a
=(m,n),
b
=(-1,1)若△ABC中
AB 
a
同向,
CB 
b
反向,則∠ABC是鈍角的概率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中AB=c,AC=b,D為線段BC上一點,且∠BAD=α,∠CAD=β,線段AD=l.
(1)求證:
sinα
b
+
sinβ
c
=
sin(α+β)
l

(2)若AB=4
2
,AC=4
,∠BAD=30°,∠CAD=45°,試求線段AD的長.

查看答案和解析>>

同步練習冊答案