在△ABC中AB=c,AC=b,D為線段BC上一點(diǎn),且∠BAD=α,∠CAD=β,線段AD=l.
(1)求證:
sinα
b
+
sinβ
c
=
sin(α+β)
l

(2)若AB=4
2
,AC=4
,∠BAD=30°,∠CAD=45°,試求線段AD的長(zhǎng).
分析:(1)在△ABC中,S△ABC=S△ABD+S△BCD,再同除
1
2
bcl
即得結(jié)論;
(2)由(1)代入數(shù)據(jù),可求線段AD的長(zhǎng).
解答:(1)證明:在△ABC中,S△ABC=S△ABD+S△BCD,得
1
2
bcsin(α+β)=
1
2
blsinβ+
1
2
clsinα
,
同除
1
2
bcl
即得
sinα
b
+
sinβ
c
=
sin(α+β)
l
;
(2)解:由(1)代入數(shù)據(jù)得
sin30°
4
+
sin45°
4
2
=
sin(30°+45°)
l
,解得l=
6
+
2
點(diǎn)評(píng):本題考查三角形面積公式,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,
AB
=(1,k)
,
AC
=(2,1)
,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠C=90°,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N.
(1)求證:BA•BM=BC•BN;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=3時(shí),求AB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過(guò)C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點(diǎn)E,則DE的長(zhǎng)為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉興二模)如圖,在△ABC中,∠C=90°,AC=BC=3a,點(diǎn)P在AB上,PE∥BC交AC于E,PF∥AC交BC于F.沿PE將△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(Ⅰ)求證:B′C∥平面A′PE.
(Ⅱ)若AP=2PB,求二面角A′-PC-E的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案