【題目】如圖,在三棱錐S﹣ABC中,SA=SC,AB⊥AC,D為BC的中點,E為AC上一點,且DE∥平面SAB.求證:
(1)直線AB∥平面SDE;
(2)平面ABC⊥平面SDE.
【答案】
(1)證明:因為DE∥平面SAB,DE平面ABC,平面SAB∩平面ABC=AB,
所以DE∥AB,
因為DE平面SDE,AB平面SDE,
所以AB∥平面SDE
(2)證明:因為D為BC的中點,DE∥AB,
所以E為AC的中點.
又因為SA=SC,所以SE⊥AC,
又AB⊥AC,DE∥AB,
所以DE⊥AC,
∵DE平面SDE,SE平面SDE,DE∩SE=E,
所以AC⊥平面SDE,
因為AC平面ABC,
所以平面ABC⊥平面SDE
【解析】(1)由線面平行的性質定理可得出DE∥AB,再由線面平行的判定定理得到線面平行。(2)由已知可得SE⊥AC,再利用平行的傳遞性可得DE⊥AC,由線面垂直的判定定理可得AC⊥平面SDE,,進而得到面面垂直。
【考點精析】本題主要考查了平面與平面垂直的判定的相關知識點,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者對本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 ,且各人回答正確與否相互之間沒有影響.用ξ表示甲隊的總得分.
(Ⅰ)求隨機變量ξ的分布列和數(shù)學期望;
(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中正確是( )
A.函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的值域相同
B.函數(shù)y=與y=的值域相同
C.函數(shù) 與 都是奇函數(shù)
D.函數(shù)y=與y=2x﹣1在區(qū)間[0,+∞)上都是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù)且A>0,ω>0, )的部分圖象如圖所示,若 ( ),則 的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,圓C的方程為ρ=2acosθ(a>0),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為 (t為參數(shù)),若直線l與圓C恒有公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的三個內(nèi)角分別為A,B,C.向量 共線. (Ⅰ)求角C的大;
(Ⅱ)設角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于給定的正整數(shù)k,如果各項均為正數(shù)的數(shù)列{an}滿足:對任意正整數(shù)n(n>k),an﹣kan﹣k+1…an﹣1an+1…an+k﹣1an+k=an2k總成立,那么稱{an}是“Q(k)數(shù)列”.
(1)若{an}是各項均為正數(shù)的等比數(shù)列,判斷{an}是否為“Q(2)數(shù)列”,并說明理由;
(2)若{an}既是“Q(2)數(shù)列”,又是“Q(3)數(shù)列”,求證:{an}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com