在雙曲線的一支上有不同的三點(diǎn),它們與點(diǎn)的距離依次成等差數(shù)列。

(1)求的值;

(2)求證:線段的垂直平分線經(jīng)過某一定點(diǎn),并求出定點(diǎn)的坐標(biāo)。

⑵證明略


解析:

(1),為上焦點(diǎn),上準(zhǔn)線方程為,根據(jù)圓錐曲線的共同性質(zhì)有:,,由。

(2)設(shè)的中點(diǎn)為,則,因此點(diǎn)的坐標(biāo)為,∵在雙曲線上,∴,作差得,∴,故,∴的垂直平分線的方程為,令,故的垂直平分線恒過定點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
8
+
y2
4
=1
有公共焦點(diǎn),且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動(dòng)直線l過雙曲線C的右焦點(diǎn)F且與雙曲線的右支交于P、Q兩點(diǎn).
(1)求雙曲線C的方程;
(2)無論直線l繞點(diǎn)F怎樣轉(zhuǎn)動(dòng),在雙曲線C上是否總存在定點(diǎn)M,使MP⊥MQ恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(13分) (理科)已知雙曲線與橢圓有公共焦點(diǎn),且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動(dòng)直線過雙曲線的右焦點(diǎn)且與雙曲線的右支交于兩點(diǎn).

(1)求雙曲線的方程;

(2)無論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),在雙曲線上是否總存在定點(diǎn),使恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線與橢圓有公共焦點(diǎn),且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動(dòng)直線過雙曲線的右焦點(diǎn)且與雙曲線的右支交于兩點(diǎn).

(1)求雙曲線的方程;

(2)無論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),在雙曲線上是否總存在定點(diǎn),使恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年重慶十一中高考數(shù)學(xué)一模訓(xùn)練試卷(二)(解析版) 題型:解答題

已知雙曲線與橢圓有公共焦點(diǎn),且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動(dòng)直線l過雙曲線C的右焦點(diǎn)F且與雙曲線的右支交于P、Q兩點(diǎn).
(1)求雙曲線C的方程;
(2)無論直線l繞點(diǎn)F怎樣轉(zhuǎn)動(dòng),在雙曲線C上是否總存在定點(diǎn)M,使MP⊥MQ恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案