(13分) (理科)已知雙曲線與橢圓有公共焦點(diǎn),且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動直線過雙曲線的右焦點(diǎn)且與雙曲線的右支交于兩點(diǎn).

(1)求雙曲線的方程;

(2)無論直線繞點(diǎn)怎樣轉(zhuǎn)動,在雙曲線上是否總存在定點(diǎn),使恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

 

【答案】

 

(1)

(2)雙曲線上存在定點(diǎn),使恒成立

【解析】(理科)解:(1)設(shè),則由題意有:

   ∴,

故雙曲線的方程為,                         …………… 4分

(2)解法一:由(1)得點(diǎn)

當(dāng)直線l的斜率存在時(shí),設(shè)直線方程,,

將方程與雙曲線方程聯(lián)立消去得:

    解得                   …………… 6分

 假設(shè)雙曲線上存在定點(diǎn),使恒成立,設(shè)為

則:

,∴

故得:對任意的恒成立,

,解得

∴當(dāng)點(diǎn)時(shí),恒成立;                …………… 10分

當(dāng)直線l的斜率不存在時(shí),由,知點(diǎn)使得也成立.

又因?yàn)辄c(diǎn)是雙曲線的左頂點(diǎn),                     …………… 12分

所以雙曲線上存在定點(diǎn),使恒成立.  …………… 13分

解法二(略解):當(dāng)直線l的斜率不存在時(shí),由,,且點(diǎn)在雙曲線上可求得,

當(dāng)直線l的斜率存在時(shí),將,代入,經(jīng)計(jì)算發(fā)現(xiàn)對任意的恒成立,從而恒有成立.

因而雙曲線上存在定點(diǎn),使恒成立.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆安徽省高一元月文理分班考試數(shù)學(xué) 題型:解答題

 

(13分,理科做)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052120461776561595/SYS201205212048004843164869_ST.files/image002.png">,且同時(shí)滿足:①;②恒成立;③若,則有

(1)試求函數(shù)的最大值和最小值;

(2)試比較的大小N);

(3)某人發(fā)現(xiàn):當(dāng)x=(nÎN)時(shí),有f(x)<2x+2.由此他提出猜想:對一切xÎ(0,1,都有,請你判斷此猜想是否正確,并說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

16. (本小題滿分13分) 從4名文科教師和3名理科教師中任選3人擔(dān)任班主任.(寫出過程,最后結(jié)果用分?jǐn)?shù)表示)

(1) 求所選3人都是理科教師的概率;

(2) 求所選3人中恰有1名理科教師的概率;

(3) 求所選3人中至少有1名理科教師的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知正方體ABCDA'B'C'D'的棱長為1,點(diǎn)M是棱AA'的中點(diǎn),點(diǎn)O是對角線BD'的中點(diǎn).

(Ⅰ)求證:OM為異面直線AA'和BD'的公垂線;

(Ⅱ)求二面角MBC'-B'的大小;

(Ⅲ)求三棱錐MOBC的體積(理科做,文科不做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

某校從參加高三年級理科綜合物理考試的學(xué)生中隨機(jī)抽出名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(Ⅱ)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的

平均分;

(Ⅲ)若從名學(xué)生中隨機(jī)抽取人,抽到的學(xué)生成績在分,在分,

分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.

【解析】(1)中利用直方圖中面積和為1,可以求解得到分?jǐn)?shù)在內(nèi)的頻率為

(2)中結(jié)合平均值可以得到平均分為:

(3)中用表示抽取結(jié)束后的總記分x, 學(xué)生成績在的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。

(Ⅰ)設(shè)分?jǐn)?shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分

(求解頻率3分,畫圖1分)

(Ⅱ)平均分為:……7分

(Ⅲ)學(xué)生成績在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

;;

;.(每個(gè)1分)

所以的分布列為

0

1

2

3

4

…………………13分

 

查看答案和解析>>

同步練習(xí)冊答案