【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)證明:當(dāng)時(shí),.
【答案】(1)見解析 (2)見解析
【解析】
(1)先求函數(shù)定義域,由導(dǎo)數(shù)大于0,得增區(qū)間;導(dǎo)數(shù)小于0,得減區(qū)間;
(2)由題意可得即證lnx<x﹣1<xlnx.由(1)的單調(diào)性可得lnx<x﹣1;設(shè)F(x)=xlnx﹣x+1,x>1,求出單調(diào)性,即可得到x﹣1<xlnx成立;
(1)由題設(shè),的定義域?yàn)?/span>,
,令,解得.
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.
(2)證明:當(dāng)x∈(1,+∞)時(shí),,即為lnx<x﹣1<xlnx.
由(1)可得f(x)=lnx﹣x+1在(1,+∞)遞減,
可得f(x)<f(1)=0,即有lnx<x﹣1;
設(shè)F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,
當(dāng)x>1時(shí),F′(x)>0,可得F(x)遞增,即有F(x)>F(1)=0,
即有xlnx>x﹣1,則原不等式成立;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖幾何體ADM-BCN中, 是正方形, , , , , .
(Ⅰ)求證: ;
(Ⅱ)求證: ;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, , , , 是中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求寫出下列命題,并判斷真假:
(1)命題:“在中,若則”的逆命題;
(2)命題:“若兩個(gè)數(shù)的和為有理數(shù),則這兩個(gè)數(shù)都是有理數(shù)。”的否命題;
(3)命題:“若a≠0且b≠0,則ab≠0”的逆否命題;
(4)命題:“a=0或b=0,則a2+b2=0”的逆否命題;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“周末年輕人的休閑方式與性別有關(guān)系”?
參考公式:
參考數(shù)據(jù):
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 天氣預(yù)報(bào)說(shuō)明天下雨的概率為,則明天一定會(huì)下雨
B. 不可能事件不是確定事件
C. 統(tǒng)計(jì)中用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量的線性關(guān)系的強(qiáng)弱,若則兩個(gè)變量正相關(guān)很強(qiáng)
D. 某種彩票的中獎(jiǎng)率是,則買1000張這種彩票一定能中獎(jiǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,,的中點(diǎn).
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;
(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com