【題目】已知直線l過點A(-1,0)且與⊙B:相切于點D,以坐標軸為對稱軸的雙曲線E過點D,一條漸近線平行于l,則E的離心率為( )

A. B. 2 C. D.

【答案】B

【解析】

設直線lykx+1),求得圓的圓心和半徑,運用直線和圓相切的條件:dr,求得斜率k,即得到漸近線的斜率,從而得到雙曲線的離心率.

可設直線lykx+1),

Bx2+y22x0的圓心為(1,0),半徑為1,

由相切的條件可得,d1,解得k,

可得漸近線方程為yx

直線l方程為yx+1),聯(lián)立x2+y22x0,解得x,y

D,),

設雙曲線的方程為y2x2mm0),

雙曲線E過點D,

代入D的坐標,可得m

則雙曲線的方程為1

,,e=2,

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2006 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災害 . 在資興市的東江湖岸邊的點 O (可視湖岸為直線) 停放著一只救人的小船,由于纜繩突然斷開,小船被風刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時,岸上有一人從同一地點開始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正多面體共有5種,即正四面體、正六面體、正八面體、正十二面體和正二十面體.任一個正多面體都有內切球和外接球,若一個半徑為1的球既是一個正四面體的內切球,又是一個正六面體的外接球,則這兩個多面體的頂點之間的最短距離為(

A.1B.1C.21D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩焦點分別為,其短半軸長為.

(1)求橢圓的方程;

(2)設不經(jīng)過點的直線與橢圓相交于兩點.若直線的斜率之和為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將函數(shù)圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),再將所得到的圖象向左平移個單位長度.

1)寫出函數(shù)的解析式和其圖象的對稱中心坐標.

2)已知關于的方程上有兩個不同的解,,求實數(shù)的取值范圍和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為正實數(shù).

(1)若不等式恒成立,求實數(shù)的取值范圍;

(2)時,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內角A,B,C的對邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個公共焦點F.設拋物線C與橢圓E在第一象限的交點為M.滿足|MF|.

1)求橢圓E的標準方程;

2)過點P1,)的直線交拋物線CA、B兩點,直線PO交橢圓E于另一點Q.PAB的中點,求△QAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,

已知圓和圓.

1)若直線過點,且被圓截得的弦長為

求直線的方程;(2)設P為平面上的點,滿足:

存在過點P的無窮多對互相垂直的直線,

它們分別與圓和圓相交,且直線被圓

截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。

查看答案和解析>>

同步練習冊答案