【題目】甲、乙、丙三名學(xué)生一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預(yù)錄取生(可在高考中加分錄。,兩次考試過程相互獨(dú)立,根據(jù)甲、乙、丙三名學(xué)生的平均成績分析,甲、乙、丙3名學(xué)生能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.60.6,0.75.

1)求甲、乙、丙三名學(xué)生中恰有一人通過筆試的概率;

2)求經(jīng)過兩次考試后,至少有一人被該高校預(yù)錄取的概率.

【答案】10.38;(20.6864.

【解析】

(1)分別記甲、乙、丙三名學(xué)生筆試合格為事件,則為相互獨(dú)立事件,E表示事件恰有一人通過筆試;E分解為3個(gè)互斥事件:,這三個(gè)互斥事件內(nèi)部也是相互獨(dú)立事件,從而進(jìn)行計(jì)算;(2)一名學(xué)生被該高校預(yù)錄取指筆試和面試均合格,這兩次考試過程相互獨(dú)立,分別計(jì)算出三名學(xué)生各自被錄取的概率,首先求出三人均未被錄取的概率,然后由對(duì)立事件的概率性質(zhì)即可得解.

1)分別記甲、乙、丙三名學(xué)生筆試合格為事件,則為相互獨(dú)立事件,E表示事件恰有一人通過筆試,則

即恰有一人通過筆試的概率是0.38.

2)分別記甲、乙、丙三名學(xué)生經(jīng)過兩次考試后合格為事件A,BC,

.

事件F表示甲、乙、丙三人中至少有一人被該高校預(yù)錄取,

表示甲、乙、丙三人均沒有被該高校預(yù)錄取,

于是.

即經(jīng)過兩次考試后,至少有一人被該高校預(yù)錄取的概率是0.6864.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓M=1a>b>c)的一個(gè)頂點(diǎn)坐標(biāo)為(0,1),焦距為2.若直線y=x+m與橢圓M有兩個(gè)不同的交點(diǎn)A,B

I)求橢圓M的方程;

II)將表示為m的函數(shù),并求△OAB面積的最大值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.

1)求底面積,并用含x的表達(dá)式表示池壁面積;

2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省數(shù)學(xué)學(xué)業(yè)水平考試成績共分為、、四個(gè)等級(jí),在學(xué)業(yè)水平考試成績分布后,從該省某地區(qū)考生中隨機(jī)抽取名考生,統(tǒng)計(jì)他們的數(shù)學(xué)成績,部分?jǐn)?shù)據(jù)如下:

等級(jí)

頻數(shù)

頻率

(1)補(bǔ)充完成上述表格的數(shù)據(jù);

(2)現(xiàn)按上述四個(gè)等級(jí),用分層抽樣方法從這名考生中抽取名.在這名考生中,從成績?yōu)?/span>等和等的所有考生中隨機(jī)抽取名,求至少有名成績?yōu)?/span>等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難題的計(jì)算公式為,其中為第題的難度,為答對(duì)該題的人數(shù),為參加測試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

學(xué)生 編號(hào)

題號(hào)

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對(duì)人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對(duì)人數(shù);

題號(hào)

1

2

3

4

5

實(shí)測答對(duì)人數(shù)

實(shí)測難度

(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測難度,為第題的預(yù)估難度().規(guī)定:若,則稱該次測試的難度估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是我國某城市在2017年1月份至10月份各月最低溫與最高溫 的數(shù)據(jù)一覽表

已知該城市的各月最低溫與最高溫具有線性相關(guān)關(guān)系,根據(jù)該一覽表,則下列結(jié)論錯(cuò)誤的是 ( )

A. 最低溫與最高溫為正相關(guān)

B. 每月最高溫與最低溫的平均值前8個(gè)月逐月增加

C. 月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月

D. 1月至4月的月溫差(最高溫減最低溫)相對(duì)于7月至10月,波動(dòng)性更大

查看答案和解析>>

同步練習(xí)冊(cè)答案