【題目】在直角坐標(biāo)系xOy中,以原點O為極點,以x軸非負半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點到直線l的最大距離.

【答案】(1) (2)

【解析】試題分析:(1)利用兩角差的余弦公式及極坐標(biāo)與直角坐標(biāo)的互化公式可得直線l的普通方程;利用同角三角函數(shù)的基本關(guān)系,消去θ可得曲線C的普通方程.

(2)由點到直線的距離公式、兩角和的正弦公式,及正弦函數(shù)的有界性求得點P到直線l的距離的最大值.

試題解析:,

上任取一點,則點到直線的距離為

. 7當(dāng)-1,即時,. 10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為橢圓上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設(shè).

(1)若點的坐標(biāo)為,求橢圓的方程及的值;

(2)若,求橢圓的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有50名學(xué)生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是(
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點.設(shè)為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連結(jié)并延長,分別交橢圓于兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線的斜率分別為,是否存在實數(shù),使得?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐頂點為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,

(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性并證明;

(2)若關(guān)于的不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年至2020年,第六屆全國文明城市創(chuàng)建工作即將開始.在201797日召開的攀枝花市創(chuàng)文工作推進會上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標(biāo).為了確保創(chuàng)文工作,今年初市交警大隊在轄區(qū)開展“機動車不禮讓行人整治行動” .下表是我市一主干路口監(jiān)控設(shè)備抓拍的5個月內(nèi) “駕駛員不禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);

(Ⅲ)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過

駕齡年以上

合計

能否據(jù)此判斷有97.5%的把握認為“禮讓斑馬線”行為與駕齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

同步練習(xí)冊答案