(2013•濰坊一模)如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點E,F(xiàn)分別在BC,AD上,且E為BC中點,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使二面角A-EF-D等于60°.
(I)設這P為AD的中點,求證:CP∥平面ABEF;
(Ⅱ)求直線AF與平面ACD所成角的正弦值.
分析:(I)取AF中點Q,連接EQ、PQ,利用三角形中位線定理結合已知條件證出四邊形PQEC是平行四邊形,可得CP∥EQ,再由線面平行的判定定理,即可得到CP∥平面ABEF;
(II)根據(jù)折疊后仍有EF⊥AF且EF⊥FD,可得EF⊥平面ADF且∠AFD就是二面角A-EF-D的平面角.過A作AO⊥FD于O,平面CDFE內(nèi)作OG∥EF交EC于G,可得直線OG、OD、OA兩兩互相垂直.因此分別以OG、OD、OA所在直線為x、y、z軸,建立如圖所示坐標系.算出F、A、D、C各點的坐標,從而得到向量
AF
、
AD
CD
的坐標,根據(jù)垂直向量數(shù)量積為零,建立方程組算出平面ACD的一個法向量為
n
=(1,1,
3
),用夾角公式算出
n
、
AF
夾角的余弦,最后根據(jù)直線與平面所成角的性質(zhì),得到
n
、
AF
夾角余弦的絕對值即為直線AF與平面ACD所成角的正弦值.
解答:解:(I)取AF中點Q,連接EQ、PQ
∵QP是△ADF的中位線,∴QP=DF且QP=
1
2
DF
,
又∵EC∥DF且EC=
1
2
DF,
∴QP∥EC且QP=EC,可得四邊形PQEC是平行四邊形,
可得CP∥EQ
∵CP?平面ABEF,EQ?平面ABEF,∴CP∥平面ABEF;
(II)根據(jù)題意,折疊后仍有EF⊥AF,EF⊥FD
∴∠AFD就是二面角A-EF-D的平面角,∠AFD=60°
∵AF、FD是平面ADF內(nèi)的相交直線,∴EF⊥平面ADF.
∵AO?平面ADF,∴AO⊥EF,
過A作AO⊥FD于O,
∵EF、FD是平面CDFE內(nèi)的相交直線,∴AO⊥平面CDFE,
在平面CDFE內(nèi),作OG∥EF交EC于G,則OG⊥FD,OG⊥AO
分別以OG、OD、OA所在直線為x軸、y軸、z軸,建立空間直角坐標系O-xyz,如圖所示
Rt△AOF中,AF=2,∠AF0=60°,則FO=1,OA=
3
,
∴F(0,-1,0),A(0,0,
3
),D(0,3,0),C(2,1,0)
可得
AF
=(0,-1,-
3
),
AD
=(0,3,-
3
),
CD
=(-2,2,0)
設平面ACD的一個法向量為
n
=(x,y,z),則
n
AD
=3y-
3
z=0
n
CD
=-2x+2z=0

取z=
3
,得x=y=1,可得
n
=(1,1,
3
),
∵cos
n
,
AF
=
-1-3
5
=-
2
5
5
,
∴設直線AF與平面ACD所成角為α,則sinα=|cos
n
,
AF
|=
2
5
5

即直線AF與平面ACD所成角的正弦值是
2
5
5
點評:本題給出平面圖形的翻折,求證線面平行并在已知二面角大小的情況下求直線與平面所成角正弦值,著重考查了線面平行的判定與性質(zhì)和利用空間向量研究直線與平面所成角的求法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)設集合A={x|2x≤4},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)如圖,在邊長為2的菱形ABCD中,∠BAD=60°,E為BC中點,則
AE
BD
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)某車隊準備從甲、乙等7輛車中選派4輛參加救援物資的運輸工作,并按出發(fā)順序前后排成一隊,要求甲、乙至少有一輛參加,且若甲、乙同時參加,則它們出發(fā)時不能相鄰,那么不同排法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)已知數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個數(shù)a1,a2,a4,a7,…構成等差數(shù)列{bn},Sn是{bn}的前n項和,且b1=a1=1,S5=15.
( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構成公比為正數(shù)的等比數(shù)列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)設Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,當m∈[-1,1]時,對任意n∈N*,不等式t3-2mt-
8
3
Tn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)復數(shù)z=
3+i
1-i
的共軛復數(shù)
.
z
=( 。

查看答案和解析>>

同步練習冊答案