【題目】調(diào)查表明,市民對城市的居住滿意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價與收入的滿意度有極強的相關(guān)性,現(xiàn)將這三項的滿意度指標分別記為x、y、z,并對它們進行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標ω=x+y+z的值評定居民對城市的居住滿意度等級:若ω≥4,則居住滿意度為一級;若2≤ω≤3,則居住滿意度為二級;若0≤ω≤1,則居住滿意度為三級,為了解某城市居民對該城市的居住滿意度,研究人員從此城市居民中隨機抽取10人進行調(diào)查,得到如下結(jié)果:
人員編號 | 1 | 2 | 3 | 4 | 5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,1,1) | (1,2,1) |
人員編號 | 6 | 7 | 8 | 9 | 10 |
(x,y,z) | (1,2,2) | (1,1,1) | (1,2,2) | (1,0,0) | (1,1,1) |
(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿意度指標z相同的概率;
(2)從居住滿意度為一級的被調(diào)查者中隨機抽取一人,其綜合指標為m,從居住滿意度不是一級的被調(diào)查者中任取一人,其綜合指標為n,記隨機變量ξ=m﹣n,求隨機變量ξ的分布列及其數(shù)學(xué)期望.
【答案】
(1)解:記事件A為“從10被調(diào)查者中任取兩人,這兩人的居住滿意度指標z相同”,
則居住滿意指標z為0的只有編號為9的一位,
居住滿意指標z為1的有編號為2,4,5,7,10,共五位,
居住滿意指標z為2的有編號為1,3,6,8,共四位,
從10被調(diào)查者中任取兩人,基本事件總數(shù)n= =10,
這兩人的居住滿意度指標z相同的結(jié)果為 =16,
∴這兩人的居住滿意度指標z相同的概率p= .
(2)解:計算10名被調(diào)查者的綜合指標,可列下表:
人員編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
綜合指標 | 4 | 4 | 6 | 2 | 4 | 5 | 3 | 5 | 1 | 3 |
其中居住滿意度為一級的有編號為1,2,3,5,6,8共六位,則m的可能取值為4,5,6,
居住滿意度不是一級的有編號為4,7,9,10共四位,則n的可能取值為1,2,3,
∴ξ=m﹣n的可能取值為1,2,3,4,5,
P(ξ=1)= = ,
P(ξ=2)= = ,
P(ξ=3)= = ,
P(ξ=4)= = ,
P(ξ=5)= = ,
∴ξ的分布列為:
ξ | 1 | 2 | p>3 | 4 | 5 |
P |
Eξ= =
【解析】(1)記事件A為“從10被調(diào)查者中任取兩人,這兩人的居住滿意度指標z相同”,從10被調(diào)查者中任取兩人,先求出基本事件總數(shù),再求出這兩人的居住滿意度指標z相同的結(jié)果,由此能求出這兩人的居住滿意度指標z相同的概率.(2)由題意ξ=m﹣n的可能取值為1,2,3,4,5,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
【考點精析】解答此題的關(guān)鍵在于理解離散型隨機變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , , ,直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面. 為線段的中點, 為線段上的動點.
()求證: .
()當點滿足時,求證:直線平面.
()當點是線段中點時,求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2(ex+e﹣x)﹣(2x+1)2(e2x+1+e﹣2x﹣1),則滿足f(x)>0的實數(shù)x的取值范圍為( )
A.(﹣1,﹣ )
B.(﹣∞,﹣1)
C.(﹣ ,+∞)
D.(﹣∞,﹣1)∪(﹣ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試點中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點測試結(jié)果互不影響,若考生小李和小王一起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.
(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可能性最大?請說明理由;
(2)假設(shè)小李選擇測試點進行測試,小王選擇測試點進行測試,記為兩人在各測試點測試合格的測試點個數(shù)之和,求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)的函數(shù)f(x)滿足如下三個條件:
①對于任意正實數(shù)a、b,都有f(ab)=f(a)+f(b)-1;
②f(2)=0;
③x>1時,總有f(x)<1.
(1)求f(1)及的值;
(2)求證:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(3)如果存在正數(shù)k,使關(guān)于x的方程f(kx)+f(2-x)=-1有解,求正實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是平行四邊形, 且, , 平面.
(1)為棱的中點,求證: 平面;
(2)求證: 平面平面;
(3)若, ,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求實數(shù)a,b的值;
(2)判斷并用定義證明f(x)在(-∞,+∞)上的單調(diào)性;
(3)若對任意的x∈[1,2],存在t∈[1,2]使得不等式f(x2+tx)+f(2x+m)>0成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線: ,已知過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于、兩點.
(1)寫出曲線和直線的直角坐標方程.
(2)若, , 成等比數(shù)列,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com