精英家教網 > 高中數學 > 題目詳情
以下四個關于圓錐曲線的命題中:①設為兩個定點,為非零常數,,則動點的軌跡為雙曲線;②過定圓上一定點作圓的動點弦,為坐標原點,若則動點的軌跡為圓;③,則雙曲線的離心率相同;④已知兩定點和一動點,若,則點的軌跡關于原點對稱.
其中真命題的序號為               (寫出所有真命題的序號).
②③④

試題分析:對于①,由雙曲線的定義可知,動點的軌跡為雙曲線的一支,所以①不正確;對于②,由,可知點為弦的中點,連結,則有,而均為定點,所以點的軌跡是以為直徑的圓,所以②正確;對于③,設的離心率分別為,則有,所以③正確;對于④,設動點,則由可得,將代入等式左邊可得,所以動點的軌跡關于原點對稱,即④正確;綜上可知,真命題的序號是②③④.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

分別是雙曲線的左右焦點,過點的直線與雙曲線的左右兩支分別交于兩點。若是等邊三角形,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

雙曲線的焦點在x軸上,虛軸長為12,離心率為,則雙曲線的標準方程為______________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以下四個關于圓錐曲線的命題中:①設為兩個定點,為非零常數,,則動點的軌跡為雙曲線;②過定圓上一定點作圓的動點弦,為坐標原點,若則動點的軌跡為圓;③設的一內角,且,則表示焦點在軸上的雙曲線;④已知兩定點和一動點,若,則點的軌跡關于原點對稱.
其中真命題的序號為               (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線C:的離心率為2,為期左右頂點,點P為雙曲線C在第一象限的任意一點,點O為坐標原點,若的斜率為,則的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線-=1(a>0,b>0)的離心率為2,一個焦點與拋物線y2=16x的焦點相同,則雙曲線的漸近線方程為(  )
A.y=±xB.y=±x
C.y=±xD.y=±x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的中心在原點,一個焦點為F1(-,0),點P在雙曲線上,且線段PF1的中點坐標為(0,2),則此雙曲線的方程是(  )
A.-y2=1B.x2-=1
C.-=1D.-=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知F為雙曲線C:-=1的左焦點,P,Q為C上的點.若PQ的長等于虛軸長的2倍,點A(5,0)在線段PQ上,則△PQF的周長為    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

雙曲線的離心率為2,則__________.

查看答案和解析>>

同步練習冊答案