【題目】給出函數(shù)如下表,則f〔g(x)〕的值域?yàn)椋?)

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情況都有可能

【答案】A

【解析】

當(dāng)x=1或x=2時(shí),g(1)=g(2)=1,f(g(1))=f(g(2))=f(1)=4;當(dāng)x=3或x=4時(shí),g(3)=g(4)=3,由表中可得f(g(3))=f(g(4))=f(3)=2.于是可得答案.

當(dāng)x=1或x=2時(shí),g(1)=g(2)=1,

∴f(g(1))=f(g(2))=f(1)=4;

當(dāng)x=3或x=4時(shí),g(3)=g(4)=3,

∴f(g(3))=f(g(4))=f(3)=2.

故f〔g(x)〕的值域?yàn)?/span>{2,4}.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入世紀(jì)以來(lái),該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記年為第年,且前年中,第年與年產(chǎn)量萬(wàn)件之間的關(guān)系如下表所示:

近似符合以下三種函數(shù)模型之一:,

(1)找出你認(rèn)為最適合的函數(shù)模型,并說(shuō)明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷(xiāo)的影響,年的年產(chǎn)量比預(yù)計(jì)減少,試根據(jù)所建立的函數(shù)模型,確定年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司將進(jìn)貨單價(jià)為8元一個(gè)的商品按10元一個(gè)出售,每天可以賣(mài)出100個(gè),若這種商品的售價(jià)每個(gè)上漲1元,則銷(xiāo)售量就減少10個(gè).

1)求售價(jià)為13元時(shí)每天的銷(xiāo)售利潤(rùn);

2)求售價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了調(diào)查居民的生活水平,隨機(jī)從小區(qū)住戶中抽取個(gè)家庭,得到數(shù)據(jù)如下:

家庭編號(hào)

1

2

3

4

5

6

月收入x(千元)

20

30

35

40

48

55

月支出y(千元)

4

5

6

8

8

11

參考公式:回歸直線的方程是:,其中, .

(1)據(jù)題中數(shù)據(jù),求月支出(千元)關(guān)于月收入(千元)的線性回歸方程(保留一位小數(shù));

(2)從這個(gè)家庭中隨機(jī)抽取個(gè),求月支出都少于萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),“共享單車(chē)”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車(chē)公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).

(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;

(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的n名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?

說(shuō)明你的理由;

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案