(1)證明BF∥平面ADE;
(2)若△ACD為正三角形,試判斷點(diǎn)A在平面BCDE內(nèi)的射影G是否在直線EF上,證明你的結(jié)論,并求角θ的余弦值.
圖2-2-4 圖2-2-5
思路分析:本小題考查空間中的線面關(guān)系,解三角形等基礎(chǔ)知識(shí),考查空間想象能力和思維能力.
(1)證明:E,F分別為正方形ABCD的邊AB、CD的中點(diǎn),
∴EB∥FD,且EB=FD,
∴四邊形EBFD為平行四邊形.∴BF∥ED.
∵ED平面AED,而B(niǎo)F平面ADE.∴BF∥平面ADE.
(2)解法一:
點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上,
過(guò)點(diǎn)A作AG垂直于平面BCDE,垂足為G,連結(jié)GC,GD.
∵△ACD為正三角形,
∴AC=AD.∴CG=GD.
∵G在CD的垂直平分線上,
∴點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上.
過(guò)G作GH垂直于ED于H,連結(jié)AH,則AH⊥DE,所以∠AHD為二面角A-DE-C的平面角,即∠AHG=θ.
設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF,
在折后圖的△AEF中,AF=a,EF=2AE=2a,
即△AEF為直角三角形,AG·EF=AE·AF.
∴AG=a.
在Rt△ADE中,AH·DE=AE·AD.
∴AH=a.∴GH=.
∴cosθ=.
解法二:點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上,
連結(jié)AF,在平面AEF內(nèi)過(guò)點(diǎn)A作AG′⊥EF,垂足為G′.
∵△ACD為正三角形,F為CD的中點(diǎn),∴AF⊥CD.
又∵EF⊥CD,∴CD⊥平面AEF.
∵AG′平面AEF,∴AG′⊥CD.
又AG′⊥EF且CD∩EF=F,CD平面BCDE,EF平面BCDE,
∴AG′⊥平面BCDE.∴G′為A在平面BCDE內(nèi)的射影G,
即點(diǎn)A在平面BCDE內(nèi)的射影在直線EF上.
過(guò)G作GH垂直于ED于H,連結(jié)AH,則AH⊥DE,所以∠AHD為二面角A-DE-C的平面角,即∠AHG=θ.
設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF,
在折后圖的△AEF中,AF=a,EF=2AE=2a,
即△AEF為直角三角形,AG·EF=AE·AF.
∴AG=a.
在Rt△ADE中,AH·DE=AE·AD,∴AH=a.
∴GH=.∴cosθ=.
解法三:點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上,
連結(jié)AF,在平面AEF內(nèi)過(guò)點(diǎn)A作AG′⊥EF,垂足為G′.
∵△ACD為正三角形,F為CD的中點(diǎn),
∴AF⊥CD.
又∵EF⊥CD,∴CD⊥平面AEF.∴CD平面BCDE.∴平面AEF⊥平面BCDE.
又∵平面AEF∩平面BCDE=EF,AG′⊥EF,
∴AG′⊥平面BCDE.∴G′為A在平面BCDE內(nèi)的射影G,
即點(diǎn)A在平面BCDE內(nèi)的射影在直線EF上.
過(guò)G作GH垂直于ED于H,連結(jié)AH,則AH⊥DE,所以∠AHD為二面角A-DE-C的平面角,即∠AHG=θ.
設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF,
在折后圖的△AEF中,AF=a,EF=2AE=2a,
即△AEF為直角三角形,AG·EF=AE·AF.∴AG=a.
在Rt△ADE中,AH·DE=AE·AD,∴AH=a.
∴GH=.∴cosθ=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
. |
AP |
. |
BD |
. |
PB |
. |
PD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com