【題目】為了解高中生作文成績(jī)與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取了100名高中生,根據(jù)問卷調(diào)查,得到以下數(shù)據(jù):

作文成績(jī)優(yōu)秀

作文成績(jī)一般

總計(jì)

課外閱讀量較大

35

20

55

課外閱讀量一般

15

30

45

總計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.5%的把握認(rèn)為課外閱讀量的大小與作文成績(jī)優(yōu)秀有關(guān);

2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再?gòu)倪@6名高中生中隨機(jī)選取2名進(jìn)行面談,求面談的高中生中至少有1名作文成績(jī)優(yōu)秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)有的把握認(rèn)為課外閱讀量的大小與作文成績(jī)優(yōu)秀有關(guān);

2

【解析】

1)計(jì)算觀測(cè)值K2,與7.879比較大小,即可得結(jié)論;

2)根據(jù)分層抽樣,分別計(jì)算出6人中成績(jī)一般的人數(shù)和成績(jī)優(yōu)秀的人數(shù),再將所有的結(jié)果一一列舉出來(lái),用古典概型的公式進(jìn)行計(jì)算.

解:(1

的把握認(rèn)為課外閱讀量的大小與作文成績(jī)優(yōu)秀有關(guān);

2)由題意可知選取的6名高中生中作文成績(jī)一般的人數(shù)是

,記為,,,

作文成績(jī)優(yōu)秀的人數(shù)是,記為E,F,

從所選的6名高中生中隨機(jī)選取2名的情況有:

,,,,

,, ,,,

,,共15種,

其中符合條件的情況有,,, ,

,,,,共9種,

故所求的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,短軸長(zhǎng)為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn)之間).

1)求橢圓的方程;

2)若,求實(shí)數(shù)的取值范圍;

3)若射線交橢圓于點(diǎn)為原點(diǎn)),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;

2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】總體由編號(hào)為01,02,...39,4040個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.

1)求證:平面平面;

2)求三棱錐外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).

1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從秦朝統(tǒng)一全國(guó)幣制到清朝末年,圓形方孔銅錢(簡(jiǎn)稱孔方兄是我國(guó)使用時(shí)間長(zhǎng)達(dá)兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個(gè)字同治重寶.某模具廠計(jì)劃仿制這樣的銅錢作為紀(jì)念品,其小圓內(nèi)部圖紙?jiān)O(shè)計(jì)如圖2所示,小圓直徑1厘米,內(nèi)嵌一個(gè)大正方形孔,四周是四個(gè)全等的小正方形(邊長(zhǎng)比孔的邊長(zhǎng)小),每個(gè)正方形有兩個(gè)頂點(diǎn)在圓周上,另兩個(gè)頂點(diǎn)在孔邊上,四個(gè)小正方形內(nèi)用于刻銅錢上的字.設(shè),五個(gè)正方形的面積和為

1)求面積關(guān)于的函數(shù)表達(dá)式,并求的范圍;

2)求面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )

A. 36種B. 44種C. 48種D. 54種

查看答案和解析>>

同步練習(xí)冊(cè)答案