【題目】已知E,F分別為正方體ABCD﹣A1B1C1D的棱AB,AA1上的點,且AE=AB,AF=AA1 , M,N分別為線段D1E和線段C1F上的點,則與平面ABCD平行的直線MN有( 。
A.1條
B.3條
C.6條
D.無數條
【答案】D
【解析】解:取BH=BB1 , 連接FH,則FH∥C1D
連接HE,在D1E上任取一點M,
過M在面D1HE中,作MG∥HO,交D1H于G,
其中O為線段OE=D1E
再過G作GN∥FH,交C1F于N,連接MN,
由于GM∥HO,HO∥KB,KB平面ABCD,
GM平面ABCD,
所以GM∥平面ABCD,
同理由NG∥FH,可推得NG∥平面ABCD,
由面面平行的判定定理得,平面MNG∥平面ABCD,
則MN∥平面ABCD.
由于M為D1E上任一點,故這樣的直線MN有無數條.
故選D.
【考點精析】通過靈活運用直線與平面平行的性質,掌握一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行即可以解答此題.
科目:高中數學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分,眾數,中位數;
(3)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數()之比如下表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種樹苗栽種時高度為A(A為常數)米,栽種n年后的高度記為f(n).經研究發(fā)現f(n)近似地滿足 f(n)=,其中,a,b為常數,n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時高度的8倍;
(2)該樹木在栽種后哪一年的增長高度最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(Ⅰ)若選取的是1月與6月的兩組數據,請根據2月至5月份的數據,求出y關于x的線性回歸方程=x+;
(Ⅱ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
附:(參考數據)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①三點確定一個平面;
②在空間中,過直線外一點只能作一條直線與該直線平行;
③若平面α上有不共線的三點到平面β的距離相等,則α∥β;
④若直線a、b、c滿足a⊥b、a⊥c,則b∥c.
其中正確命題的個數是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a≥2,不等式logax+loga[(a+1)ak-1-x]≥2k-1的解集為A,其中a∈N*,k∈N.
(1)求A.
(2)設f(k)表示A中自然數個數,求和Sn=f(1)+f(2)+…+f(n).
(3)當a=2時,比較Sn與n2+n的大小,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com