【題目】已知函數(shù)f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)對(duì)任意的x∈R恒成立,則實(shí)數(shù)a的取值范圍是

【答案】[ ,+∞)
【解析】解:∵f(x)=x(1﹣a|x|)+1= = (a>0),
∴f(x+a)=(x+a)(1﹣a|x+a|)+1,
∵f(x+a)≤f(x)對(duì)任意的x∈R恒成立,
在同一坐標(biāo)系中作出滿足題意的y=f(x+a)與y=f(x)的圖象如下:

∴x(1+ax)+1≥(x+a)[1﹣a(x+a)]+1恒成立,
即x+ax2+1≥﹣a(x2+2ax+a2)+x+a+1,
整理得:2x2+2ax+a2﹣1≥0恒成立,
∴△=4a2﹣4×2(a2﹣1)≤0,
解得:a≥
所以答案是:[ ,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=8x的焦點(diǎn),作傾斜角為45°的直線,則被拋物線截得的弦長(zhǎng)為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條直線a與平面α內(nèi)的一條直線b所成的角為30°,則下列說(shuō)法正確的是(  )

A. 直線a與平面α所成的角為30° B. 直線a與平面α所成的角大于30°

C. 直線a與平面α所成的角小于30° D. 直線a與平面α所成的角不超過(guò)30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調(diào)性;
(2)若m>0,g(x)=f(x)+ 存在兩個(gè)極值點(diǎn)x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下關(guān)于線性回歸的判斷,正確的個(gè)數(shù)是(  )

①若散點(diǎn)圖中所有點(diǎn)都在一條直線附近,則這條直線為回歸直線;

②散點(diǎn)圖中的絕大多數(shù)都線性相關(guān),個(gè)別特殊點(diǎn)不影響線性回歸,如圖中的A,B,C點(diǎn);

③已知直線方程為=0.50x-0.81,則x=25時(shí),y的估計(jì)值為11.69;

④回歸直線方程的意義是它反映了樣本整體的變化趨勢(shì).

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市在海島A上建了一水產(chǎn)養(yǎng)殖中心.在海岸線l上有相距70公里的B、C兩個(gè)小鎮(zhèn),并且AB=30公里,AC=80公里,已知B鎮(zhèn)在養(yǎng)殖中心工作的員工有3百人,C鎮(zhèn)在養(yǎng)殖中心工作的員工有5百人.現(xiàn)欲在BC之間建一個(gè)碼頭D,運(yùn)送來(lái)自兩鎮(zhèn)的員工到養(yǎng)殖中心工作,又知水路運(yùn)輸與陸路運(yùn)輸每百人每公里運(yùn)輸成本之比為1:2.

(1)求sin∠ABC的大;
(2)設(shè)∠ADB=θ,試確定θ的大小,使得運(yùn)輸總成本最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +x.
(1)若函數(shù)f(x)的圖象在(1,f(1))處的切線經(jīng)過(guò)點(diǎn)(0,﹣1),求a的值;
(2)是否存在負(fù)整數(shù)a,使函數(shù)f(x)的極大值為正值?若存在,求出所有負(fù)整數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)a>0,求證:函數(shù)f(x)既有極大值,又有極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD中,AP⊥平面PCD,ADBC,ABBCAD,EF分別為線段AD,PC的中點(diǎn).

(1)求證:AP∥平面BEF;

(2)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問(wèn)題)成了后世西方數(shù)學(xué)家處理問(wèn)題的重要依據(jù),通過(guò)這一原理,很多的代數(shù)的公理或定理都能夠通過(guò)圖形實(shí)現(xiàn)證明,也稱之為無(wú)字證明.現(xiàn)有如圖所示圖形,點(diǎn)F在半圓O上,點(diǎn)C在直徑AB上,且OF⊥AB,設(shè)AC=a,BC=b,則該圖形可以完成的無(wú)字證明為(
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)

查看答案和解析>>

同步練習(xí)冊(cè)答案